Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 11
Atmos. Chem. Phys., 15, 6183–6204, 2015
https://doi.org/10.5194/acp-15-6183-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 6183–6204, 2015
https://doi.org/10.5194/acp-15-6183-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jun 2015

Research article | 05 Jun 2015

Arctic microbial and next-generation sequencing approach for bacteria in snow and frost flowers: selected identification, abundance and freezing nucleation

R. Mortazavi1, S. Attiya2, and P. A. Ariya3 R. Mortazavi et al.
  • 1Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
  • 2Faculty of Medicine, McGill University and Génome Québec Innovation Centre, Montreal, Canada
  • 3Department of Chemistry, McGill University, Montreal, Canada

Abstract. During the spring of 2009, as part of the Ocean–Atmosphere–Sea Ice–Snowpack (OASIS) campaign in Barrow, Alaska, USA, we examined the identity, population diversity, freezing nucleation ability of the microbial communities of five different snow types and frost flowers. In addition to the culturing and gene-sequence-based identification approach, we utilized a state-of-the-art genomic next-generation sequencing (NGS) technique to examine the diversity of bacterial communities in Arctic samples. Known phyla or candidate divisions were detected (11–18) with the majority of sequences (12.3–83.1%) belonging to one of the five major phyla: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria. The number of genera detected ranged from, 101–245. The highest number of cultivable bacteria was observed in frost flowers (FFs) and accumulated snow (AS) with 325 ± 35 and 314 ± 142 CFU m L−1, respectively; and for cultivable fungi 5 ± 1 CFU m L−1 in windpack (WP) and blowing snow (BS). Morphology/elemental composition and ice-nucleating abilities of the identified taxa were obtained using high resolution electron microscopy with energy-dispersive X-ray spectroscopy and ice nucleation cold-plate, respectively. Freezing point temperatures for bacterial isolates ranged from −20.3 ± 1.5 to −15.7 ± 5.6 °C, and for melted snow samples from −9.5 ± 1.0 to −18.4 ± 0.1 °C. An isolate belonging to the genus Bacillus (96% similarity) had ice nucleation activity of −6.8 ± 0.2 °C. Comparison with Montreal urban snow, revealed that a seemingly diverse community of bacteria exists in the Arctic with some taxa possibly originating from distinct ecological environments. We discuss the potential impact of snow microorganisms in the freezing and melting process of the snowpack in the Arctic.

Publications Copernicus
Download
Short summary
Next-generation sequencing revealed the existence of diverse community of bacteria in the Arctic samples with many originating from distinct ecological environments. The observed varied range in ice nucleation of cultivable bacteria and in all of the melted samples further revealed the existence of the heterogeneous pool of bacteria. Changes in the microbial pool and its impact on the freezing and melting process may potentially lead to changing the Arctic environment and thus global climate.
Next-generation sequencing revealed the existence of diverse community of bacteria in the Arctic...
Citation