Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 11 | Copyright
Atmos. Chem. Phys., 15, 6035-6046, 2015
https://doi.org/10.5194/acp-15-6035-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Jun 2015

Research article | 02 Jun 2015

Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation

A. Tasoglou1 and S. N. Pandis1,2,3 A. Tasoglou and S. N. Pandis
  • 1Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
  • 2Department of Chemical Engineering, University of Patras, Patra, Greece
  • 3Institute of Chemical Engineering Sciences (ICE-HT), FORTH, Patra, Greece

Abstract. The secondary organic aerosol (SOA) production during the oxidation of β-caryophyllene by ozone (O3) and hydroxyl radicals (OH) and the subsequent chemical aging of the products during reactions with OH were investigated. Experiments were conducted with ozone and with hydroxyl radicals at low NOx (zero added NOx) and at high NOx (hundreds of parts per billion). The SOA mass yield at 10 μg m−3 of organic aerosol was 27% for the ozonolysis, 20% for the reaction with OH at low NOx, and 38% at high NOx under dry conditions, 20 °C, and ozone excess. Parameterizations of the fresh SOA yields have been developed. The average fresh SOA atomic O : C ratio varied from 0.24 to 0.34 depending on the oxidant and the NOx level, while the H : C ratio was close to 1.5 for all systems examined. An average density of 1.06 ± 0.1 μg m−3 of the β-caryophyllene SOA was estimated. The exposure to UV light had no effect on the β-caryophyllene SOA concentration and aerosol mass spectrometer (AMS) measurements. The chemical aging of the β-caryophyllene SOA produced was studied by exposing the fresh SOA to high concentrations (107 molecules cm−3) of OH for several hours. These additional reactions increased the SOA concentration by 15–40% and O : C by approximately 25%. A limited number of experiments suggested that there was a significant impact of the relative humidity on the chemical aging of the SOA. The evaporation rates of β-caryophyllene SOA were quantified by using a thermodenuder allowing us to estimate the corresponding volatility distributions and effective vaporization enthalpies.

Download & links
Publications Copernicus
Download
Citation
Share