Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 10 | Copyright

Special issue: Coupled chemistry–meteorology modelling: status and...

Atmos. Chem. Phys., 15, 5325-5358, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 18 May 2015

Review article | 18 May 2015

Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

M. Bocquet et al.
Related authors
Parametric covariance dynamics for the nonlinear diffusive Burgers equation
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481-495,,, 2018
Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother
Anthony Fillion, Marc Bocquet, and Serge Gratton
Nonlin. Processes Geophys., 25, 315-334,,, 2018
Review article: Comparison of local particle filters and new implementations
Alban Farchi and Marc Bocquet
Nonlin. Processes Geophys. Discuss.,,, 2018
Revised manuscript under review for NPG
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys. Discuss.,,, 2018
Revised manuscript under review for NPG
A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0)
J.-M. Haussaire and M. Bocquet
Geosci. Model Dev., 9, 393-412,,, 2016
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Air quality simulations for London using a coupled regional-to-local modelling system
Christina Hood, Ian MacKenzie, Jenny Stocker, Kate Johnson, David Carruthers, Massimo Vieno, and Ruth Doherty
Atmos. Chem. Phys., 18, 11221-11245,,, 2018
Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007-11030,,, 2018
Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India
Gerhard Lammel, Céline Degrendele, Sachin S. Gunthe, Qing Mu, Akila Muthalagu, Ondřej Audy, Chelackal V. Biju, Petr Kukučka, Marie D. Mulder, Mega Octaviani, Petra Příbylová, Pourya Shahpoury, Irene Stemmler, and Aswathy E. Valsan
Atmos. Chem. Phys., 18, 11031-11040,,, 2018
Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling
Sarah A. Strode, Junhua Liu, Leslie Lait, Róisín Commane, Bruce Daube, Steven Wofsy, Austin Conaty, Paul Newman, and Michael Prather
Atmos. Chem. Phys., 18, 10955-10971,,, 2018
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459-10481,,, 2018
Cited articles
Abida, R. and Bocquet, M.: Targeting of observations for accidental atmospheric release monitoring, Atmos. Environ., 43, 6312–6327, 2009.
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615,, 2008.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253–264, 2003.
Publications Copernicus
Special issue
Short summary
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of concentrations, and perform inverse modeling. Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. We review here the current status of data assimilation in atmospheric chemistry models, with a particular focus on future prospects for data assimilation in CCMM.
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts,...