Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 10 | Copyright

Special issue: Coupled chemistry–meteorology modelling: status and...

Atmos. Chem. Phys., 15, 5325-5358, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 18 May 2015

Review article | 18 May 2015

Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

M. Bocquet et al.
Related authors
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error
Colin Grudzien, Alberto Carrassi, and Marc Bocquet
Nonlin. Processes Geophys., 25, 633-648,,, 2018
Parametric covariance dynamics for the nonlinear diffusive Burgers equation
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481-495,,, 2018
Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother
Anthony Fillion, Marc Bocquet, and Serge Gratton
Nonlin. Processes Geophys., 25, 315-334,,, 2018
Review article: Comparison of local particle filters and new implementations
Alban Farchi and Marc Bocquet
Nonlin. Processes Geophys. Discuss.,,, 2018
Revised manuscript accepted for NPG
A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0)
J.-M. Haussaire and M. Bocquet
Geosci. Model Dev., 9, 393-412,,, 2016
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference
Jorgen S. Frederiksen and Roger J. Francey
Atmos. Chem. Phys., 18, 14837-14850,,, 2018
Surface fluxes of bromoform and dibromomethane over the tropical western Pacific inferred from airborne in situ measurements
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787-14798,,, 2018
Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions
Bo Zheng, Dan Tong, Meng Li, Fei Liu, Chaopeng Hong, Guannan Geng, Haiyan Li, Xin Li, Liqun Peng, Ji Qi, Liu Yan, Yuxuan Zhang, Hongyan Zhao, Yixuan Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 14095-14111,,, 2018
The effects of intercontinental emission sources on European air pollution levels
Jan Eiof Jonson, Michael Schulz, Louisa Emmons, Johannes Flemming, Daven Henze, Kengo Sudo, Marianne Tronstad Lund, Meiyun Lin, Anna Benedictow, Brigitte Koffi, Frank Dentener, Terry Keating, Rigel Kivi, and Yanko Davila
Atmos. Chem. Phys., 18, 13655-13672,,, 2018
Inverse modelling of CF4 and NF3 emissions in East Asia
Tim Arnold, Alistair J. Manning, Jooil Kim, Shanlan Li, Helen Webster, David Thomson, Jens Mühle, Ray F. Weiss, Sunyoung Park, and Simon O'Doherty
Atmos. Chem. Phys., 18, 13305-13320,,, 2018
Cited articles
Abida, R. and Bocquet, M.: Targeting of observations for accidental atmospheric release monitoring, Atmos. Environ., 43, 6312–6327, 2009.
Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan, V., and Carmichael, G. R.: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615,, 2008.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253–264, 2003.
Publications Copernicus
Special issue
Short summary
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of concentrations, and perform inverse modeling. Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. We review here the current status of data assimilation in atmospheric chemistry models, with a particular focus on future prospects for data assimilation in CCMM.
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts,...