Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 9
Atmos. Chem. Phys., 15, 5069–5081, 2015
https://doi.org/10.5194/acp-15-5069-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Study of ozone, aerosols and radiation over the Tibetan Plateau...

Atmos. Chem. Phys., 15, 5069–5081, 2015
https://doi.org/10.5194/acp-15-5069-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 May 2015

Research article | 05 May 2015

Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere

J. Z. Xu1, Q. Zhang2,3, Z. B. Wang1, G. M. Yu1, X. L. Ge2, and X. Qin1 J. Z. Xu et al.
  • 1Qilian Shan Station of Glaciology and Ecologic Environment, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
  • 2Department of Environmental Toxicology, University of California, Davis, California 95616, USA
  • 3Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China

Abstract. Aerosol filter samples were collected at a high-elevation mountain observatory (4180 m a.s.l.) in the northeastern part of the Qinghai–Xizang (Tibet) Plateau (QXP) during summer 2012 using a low-volume sampler and a micro-orifice uniform deposit impactor (MOUDI). These samples were analyzed for water-soluble inorganic ions (WSIs), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and total organic nitrogen (TON) to elucidate the size-resolved chemical composition of free tropospheric aerosols in the QXP region. The average mass concentration of the sum of the analyzed species in PM2.5 (particle matter) (WSIs + OC + EC + TON) was 3.74 μg sm−3, 36% of which was sulfate, 18% OC, 17 % nitrate, 10% ammonium, 6.6% calcium, 6.4% TON, 2.6% EC, 1.5 % sodium, 0.9% chloride, 0.5% magnesium, and 0.3% potassium. The size distributions of sulfate and ammonium peaked in the accumulation mode (0.32–0.56 μm), whereas the size distributions of both nitrate and calcium peaked in the range of 1.8–3.2 μm, suggesting the formation of nitrate on mineral dust. OC, EC and TON were also predominantly found in the accumulation mode. The bulk chemical composition and the average oxidation degree of water-soluble organic matter (WSOM) were assessed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). WSOM was found to be highly oxidized in all PM2.5 samples with an average oxygen-to-carbon atomic ratio (O / C) of 1.16 and an organic mass-to-organic carbon ratio (OM / OC) of 2.75. The highly oxidized WSOM was likely related to active cloud processing during upslope air mass transport coupled with strongly oxidizing environments caused by snow/ice photochemistry. High average ratios of OC / EC (7.6) and WSOC / OC (0.79) suggested that organic aerosols were primarily made of secondary species. Secondary organic aerosol (SOA) was estimated on average accounting for 80% (62–96%) of the PM2.5, indicating that SOA is an important component of free tropospheric aerosols over the northern QXP.

Publications Copernicus
Download
Citation