The influence of clouds on radical concentrations: observations and modelling studies of HO$_x$ during the Hill Cap Cloud Thuringia (HCCT) campaign in 2010

L. K. Whalley1,2, D. Stone2, I. J. George2,*, S. Mertes3, D. van Pinxteren3, A. Tilgner3, H. Herrmann3, M. J. Evans4,5, and D. E. Heard1,2

1National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
2School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
3Leibniz-Institut für Troposphärenforschung (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
4National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
5Department of Chemistry, University of York, York, YO10 5DD, UK

*now at: National Risk Management Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA

Correspondence to: L. K. Whalley (l.k.whalley@leeds.ac.uk)

Received: 21 July 2014 – Published in Atmos. Chem. Phys. Discuss.: 15 September 2014
Revised: 24 February 2015 – Accepted: 1 March 2015 – Published: 23 March 2015

Abstract. The potential for chemistry occurring in cloud droplets to impact atmospheric composition has been known for some time. However, the lack of direct observations and uncertainty in the magnitude of these reactions led to this area being overlooked in most chemistry transport models. Here we present observations from Mt Schmücke, Germany, of the HO$_2$ radical made alongside a suite of cloud measurements. HO$_2$ concentrations were depleted in-cloud by up to 90 % with the rate of heterogeneous loss of HO$_2$ to clouds necessary to bring model and measurements into agreement, demonstrating a dependence on droplet surface area and pH. This provides the first observationally derived assessment for the uptake coefficient of HO$_2$ to cloud droplets and was found to be in good agreement with theoretically derived parameterisations. Global model simulations, including this cloud uptake, showed impacts on the oxidising capacity of the troposphere that depended critically on whether the HO$_2$ uptake leads to production of H$_2$O$_2$ or H$_2$O.

1 Introduction

Clouds occupy around 15 % of the volume of the lower troposphere and can impact atmospheric composition through changes in transport, photolysis, wet deposition and in-cloud oxidation of sulfur. Modelling studies have shown that aqueous-phase chemistry can also significantly reduce gaseous HO$_2$ concentrations by heterogeneous uptake and loss into cloud droplets (Jacob, 1996; Tilgner et al., 2005; Huijnen et al., 2014). This chemistry is predicted to reduce OH and O$_3$ concentrations, also due to the reduction in the gas-phase concentration of HO$_2$. This in turn decreases the self-cleansing capacity of the atmosphere and increases the lifetime of many trace gases (Lelieveld and Crutzen, 1990), with impacts for climate and air quality. Aqueous-phase models have been developed which combine multi-phase chemistry with detailed microphysics (Tilgner et al., 2005), but there are limited experimental field data of gas-phase radical concentrations within clouds to corroborate model predictions of heterogeneous loss of radicals to cloud droplets. There have been a number of aircraft campaigns which have measured OH and HO$_2$ radical concentrations within clouds (Mauldin et al., 1997, 1998; Olson et al., 2004; Commane et al., 2010); often, however, simultaneous observations of cloud droplet number and size distributions (or other key gas-phase radical precursors) were not made during these studies, making it difficult to assess the full impact of clouds on radical concentrations. In general therefore climate and air...
quality models do not consider this impact of clouds on atmospheric composition. Within the literature, a wide range of uptake coefficients of HO$_2$ to liquid and aerosol surfaces have been considered to reproduce observed HO$_2$ concentrations (e.g., Sommariva et al., 2004; Haggerstone et al., 2005; Emmerson et al., 2007; Whalley et al., 2010) with often large uptake coefficients (up to 1 at times) used to reconcile model over-predictions. A wide range of uptake coefficients, not wholly consistent with each other, have been reported from laboratory studies (Abbatt et al., 2012). From measurements conducted in our laboratory, uptake probabilities of HO$_2$ to sub-micron aerosols were found to be less than 0.02 at room temperature (George et al., 2013) for aqueous aerosols that did not contain significant transition metal ions; similarly low uptake coefficients were derived by Thornton and Abbatt (2005). In contrast, measurements by Taketani et al. (2008) suggest higher uptakes of \sim0.1 with enhancements observed with increasing relative humidity.

The uptake of HO$_2$ to aqueous aerosols is driven by its high solubility in water owing to its high Henry’s law constant ($=4.0 \times 10^{7}$ M atm$^{-1}$ at 298.15 K; Hanson et al., 1992). Once in the aqueous phase, reaction between dissolved HO$_2$ and its conjugate base, O$_2$H$^-$, occurs rapidly. Thornton et al. (2008) have demonstrated that the solubility and reactivity of HO$_2$ are temperature and pH dependent and, if the well-characterised aqueous-phase reactions (Sect. 2.3 (R1–R5)) alone are representative of the heterogeneous loss processes, only small uptake coefficients would be expected at room temperature, consistent with the work by George et al. (2013) and Thornton and Abbatt (2005). The enhanced uptake coefficients reported by Taketani et al. (2008) suggest that there may be additional competing mechanisms occurring, however.

Further uncertainties arise in the literature relating to the eventual gas-phase products from these aqueous-phase reactions. The general consensus, until recently, was that these reactions would ultimately produce H$_2$O$_2$ (Jacob, 1996), but the significance of the reactions depends critically on whether this is the case or whether, instead, H$_2$O is produced (Macintyre and Evans, 2011). This is significant, as H$_2$O$_2$ can photolyse to return odd hydrogen (HO$_x$ = OH + HO$_2$) to the gas phase, whilst cloud uptake of HO$_2$ to form H$_2$O provides a terminal sink for HO$_x$. Recent work by Mao et al. (2013) postulates that a catalytic mechanism involving the coupling of the transition metal ions Cu(I)/Cu(II) and Fe(II)/Fe(III) may rapidly convert HO$_2$ to H$_2$O, rather than H$_2$O$_2$ in aqueous aerosols. The concentration and availability of dissolved Fe and Cu in cloud droplets tends to be much lower than in aqueous aerosol (Jacob, 2000), with a large fraction of Cu ions present as organic complexes (Spokes et al., 1996; Nimmo and Fones, 1997), which are far less reactive towards O$_2$ and HO$_2$(aq) than the free ions (Jacob, 2000), and so it is uncertain whether the mechanism put forward by Mao et al. (2013) could be extended to heterogeneous processes occurring within cloud droplets.

To better understand the role of clouds and heterogeneous processes in the oxidative capacity of the troposphere, coordinated gas-phase measurements of OH and HO$_2$ within clouds together with aerosol–cloud microphysical measurements are needed. The Hill Cap Cloud Thuringia 2010 (HCCT-2010) campaign which took place in 2010 aimed to characterise the interaction of particulate matter and trace gases in orographic clouds. This paper presents the impact of cloud droplets on measured gas-phase OH and HO$_2$ and uses these observations to assess the proposed aqueous-phase mechanisms and determine the global impact of clouds on the tropospheric oxidising capacity.

2 Experimental

The HCCT-2010 campaign took place at the Thüringer Wald mountain range in central Germany during September and October 2010. The radical measurements were made from the German Weather Service (DWD) and the Federal Environmental Office (UBA) research station located close to the summit of Mt Schmücke (the highest peak in the mountain range, 937 m a.s.l., 10°46′8.5″ E, 50°39′16.5″ N). In October, the UBA station is immersed in cloud for 25 days on average (Herrmann et al., 2005) and, hence, is highly suitable for the study of gas and aerosol interactions with orographic cloud. Two additional experimental sites, approximately 4 km upwind of the summit site at Goldlauter and approximately 3 km downwind of the summit at Gelhberg, were also equipped with a number of instruments which enabled the processing of a single air parcel as it passed through a cloud to be assessed by multi-phase trajectory models such as SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model; Wolke et al., 2005; see Sect. 2.3). Further details of the locations may be found in Herrmann et al. (2005).

2.1 Radical measurements

OH and HO$_2$ measurements were made using the fluorescence assay by gas expansion technique (FAGE). Details of the instrumentation can be found in Whalley et al. (2010). A single FAGE fluorescence cell was used for sequential measurements of OH and HO$_2$. This was operated from the top of a 22 m high tower to co-locate with cloud measurements and ensure that the measurements were performed in full cloud. The cell was held at 1 Torr using a roots blower backed rotary pump system which was housed in an air-conditioned shipping container at the base of the tower (Fig. 1) and was connected to the cell via 30 m of flexible hosing (5 cm outer diameter – OD). A 308 nm tuneable, pulsed laser light was used to electronically excite OH radicals; this was delivered to the cell via a 30 m fibre optic cable (Oz optics) with the laser system (a Nd:YAG pumped Ti:Sapphire, Photonic In-
A number of operational modifications (from the standard University of Leeds ground-based operations; Whalley et al., 2010) were necessary to facilitate measurements of the gas-phase concentrations of the radicals within clouds. As tower measurements were required (a schematic of the measurement set-up is provided in Fig. 1), a single, smaller (4.5 cm (ID) diameter stainless steel cylinder) FAGE fluorescence cell based on the University of Leeds aircraft cell design (Commane et al., 2010) was used for sequential measurements of OH and HO_2. Ambient air was drawn into the cell through a 1 mm diameter pinhole nozzle. The distance between sampling nozzle and radical detection region was 18 cm and NO (10 SCCM, BOC, 99.5 %) was injected \(\sim 8 \) cm below the nozzle for titration of HO_2 to OH.

The fluorescence cell was orientated with the nozzle pointing horizontal to the ground in an attempt to minimise water pooling on the nozzle and being sucked into the cell during cloud events. Occasional droplets were ingested by the cell and resulted in an instantaneous large increase in the laser scattered signal. These spiked increases were discrete and short-lived; the data presented here have been filtered to remove these spikes, which were easy to identify.

Tests have been conducted post-campaign to determine the level of HO_2 interference from RO_2 radicals (Fuchs et al., 2011). Under this particular experimental set-up, an equivalent number of ethene-derived RO_2 radicals to HO_2 were found to contribute 46 % to the total HO_2 signal (Whalley et al., 2013). The FAGE instrument was found not to be sensitive to CH_3O_2 and other short-chain alkane-derived RO_2 radicals, but is sensitive to other alkene- and aromatic-derived RO_2 radicals, with similar sensitivities to that for ethene-derived RO_2. The instrument is also sensitive to longer-chain alkane-derived RO_2 radicals (\(> C_3 \)), albeit to a smaller extent, as reported by Whalley et al. (2013). For this rural environment, at this time of year, however, the contribution of alkene- and aromatic-derived RO_2 radicals to the total RO_2 budget is expected to be small, as the parent VOCs for these particular RO_2 types were at low concentrations; isoprene concentrations, for example, were on average just 12.6 pptv. As a consequence of this, the resultant HO_2 interference from RO_2 radicals should also be low.

2.2 Model expression and constraints

An analytical expression has been used to predict the mean diurnal HO_2 concentrations throughout the campaign, both during cloud events and outside of cloud events. This expression was originally developed by Carslaw et al. (1999) for modelling OH, HO_2 and RO_2 radicals in the marine boundary layer and was found to agree with full Master Chemical Mechanism (MCM) model predictions for OH and HO_2 to within 20 % for daytime hours. It has since been extended further by Smith et al. (2006) to include additional HO_2 sinks, such as heterogeneous loss \((k_{\text{loss}}) \). The expression, given in Eq. (3), derives from the solution of simultaneous...
steady-state expressions for OH and CH$_3$O$_2$ (Eq. (1) and Eq. (2) below) and includes any primary sources of HO$_2$ not coming from radical propagation steps such as formaldehyde photolysis:

\[
[\text{OH}] = \frac{2f_j(O^1D)[O_3] + [\text{HO}_2](k_{\text{HO}_2+\text{NO}}[\text{NO}] + k_{\text{HO}_2+\text{O}_3}[\text{O}_3])}{k_{\text{CO+OH}}[\text{CO}] + k_{\text{H}_2+\text{OH}}[\text{H}_2] + k_{\text{HCHO+OH}}[\text{HCHO}] + k_{\text{CH}_4+\text{OH}}[\text{CH}_4] + k_{\text{NO}_2+\text{OH}}[\text{NO}_2] + k_{\text{O}_3+\text{OH}}[\text{O}_3]}
\]

(1)

\[
[\text{CH}_3\text{O}_2] = \frac{k_{\text{CH}_3\text{O}_2+\text{HO}}[\text{HO}]}{k_{\text{CH}_3\text{O}_2+\text{HO}}[\text{CH}_4][\text{OH}]} + k_{\text{CH}_3\text{O}_2+\text{NO}}[\text{NO}]
\]

(2)

\[
\beta[\text{HO}_2]^3 + \gamma[\text{HO}_2]^2 + \delta[\text{HO}_2] + \varepsilon = 0,
\]

(3)

\[
\beta = 2k_T(2k_T3B + k_{T1}A)
\]

\[
\gamma = 2k_T2k_T5J_1 + 2k_T3k_p5[N]B + 2k_T2k_p4[4]B + k_T[N]_2B + 2Ak_T1k_p5[N]
\]

\[
\delta = 2k_T3k_p5J_1[N] + 2k_T2k_p4J_1[4] + k_T(J_1[N]_0)k_T2 + k_T3B[N]_2k_p5[N] - (J_1 + J_2)Ak_T2
\]

\[
\varepsilon = J_1k_T[N]_2k_p5[N] - (J_1 + J_2)Ak_p5[N]
\]

where

\[
J_1 = P(\text{OH}) = 2f_j[O_3]j(O^1D)
\]

\[
(f \text{ is the fraction of } O^1D \text{ that reacts with } H_2O \text{ vapour to form } OH, \text{ rather than being quenched to } O^3P).\]

\[
J_2 = 2j(\text{HCHO} \rightarrow 2\text{HO}_2)[\text{HCHO}]
\]

\[
A = k_{\text{CO+OH}}[\text{CO}] + k_{\text{H}_2+\text{OH}}[\text{H}_2] + k_{\text{HCHO+OH}}[\text{HCHO}] + k_{\text{CH}_4+\text{OH}}[\text{CH}_4] + k_{\text{NO}_2+\text{OH}}[\text{NO}_2] + k_{\text{O}_3+\text{OH}}[\text{O}_3]
\]

\[
B = k_{\text{HO}_2+\text{NO}}[\text{NO}] + k_{\text{HO}_2+\text{O}_3}[\text{O}_3] + k_{\text{loss}}
\]

\[
k_T = k_{\text{OH}+\text{NO}}k_T1 = k_{\text{HO}_2+\text{HO}_2}k_T2 = k_{\text{HO}_2+\text{CH}_2O_2}
\]

\[
k_T3 = k_{\text{OH}+\text{HO}_2k_p4} = k_{\text{CH}_4+\text{OH}}
\]

\[
k_p5 = k_{\text{CH}_3\text{O}_2+\text{NO}}
\]

Limited CO concentration data are available from the summit site during the project, owing to instrumental problems for the first 2 weeks of measurements. An average CO concentration of 231 ppbv was used in the analytical expression to determine HO$_2$ concentrations, although additional model runs at $+$ and -1σ of this average concentration (297 ppbv and 165 ppbv respectively) were also made to assess the sensitivity of the predicted HO$_2$ concentration to this constraint. Similarly, only discrete (non-continuous) measurements of HCHO were made during the project; an average value of 479 ppbv was used as a model constraint and further model runs at $+$ and -1σ of this average concentration (818 ppbv and 139 ppbv respectively) were made.

\[
j(O^1D) \text{ was measured from the top of the 22 m tower, alongside the FAGE detection cell, using a 2-}\pi \text{ filter radiometer (Bohn et al., 2008) which pointed skywards throughout the campaign. The photolysis rates of formaldehyde, } j(\text{HCHO}), \text{ have been calculated using the Tropospheric Ultraviolet and Visible (TUV) radiation model (Madronich and Flocke, 1998). The correlation between TUV calculated } j(\text{HCHO}) \text{ with TUV calculated } j(O^1D) \text{ was determined, allowing these photolysis rates to be scaled to the measured } j(O^1D) \text{ values to account for the presence of clouds. During cloud events, upward radiation will increase, with the magnitude of this increase dependent on the cloud optical depth (COD) and measurement height (Bohn, 2014). The contribution of upward radiation as a function of COD has been estimated using the TUV model using the methodology outlined by Bohn (2014). This estimated increase in upward radiation has been added to the in-cloud photolysis rates presented in Sect. 3. On average, photolysis rates are enhanced by } \sim 17\% \text{ during cloud events due to upwelling. A constant value of 1760 ppbv was assumed for CH}_4 \text{ and a value of 508 ppbv was taken for } H_2, O_3 \text{ and NO}_x \text{ measurements were made from the top of the tower using commercial analysers which ran continuously from 16 September (day 3 of the field project). Details of the ancillary measurements used for comparison and model constraints are provided in Table 1. Further details of many of the measurement techniques can be found in the overview paper from an earlier hill cap cloud experiment, the Field Investigations of Budgets and Conversions of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO) project (Herrmann et al., 2005). Rate coefficients are taken from the most recent recommendations in the Master Chemical Mechanism (MCMv3.2, http://mcm.leeds.ac.uk/MCM/). A constant uptake rate for HO$_2$ (k_{Loss}) of 0.14 s$^{-1}$ to cloud droplets was included during cloud events to reproduce the average HO$_2$ in-cloud observations. Additional model runs with no uptake during cloud events have also been run for comparison, as have model runs in which the first-order loss to droplets was varied to replicate the HO$_2$ observations as a function of (i) cloud droplet surface area and (ii) pH (Sect. 3.1).
2.3 Aqueous-phase chemistry

An outline of the aqueous-phase reactions thought to be occurring, and which converts HO$_2$ to H$_2$O$_2$, is given below:

$$\text{HO}_2(g) \rightleftharpoons \text{HO}_2(aq) \quad (R1)$$

$$\text{HO}_2(aq) \rightleftharpoons \text{H}^+(aq) + \text{O}_2^-(aq) \quad (R2)$$

$$\text{HO}_2(aq) + \text{HO}_2(aq) \rightarrow \text{H}_2\text{O}_2(aq) + \text{O}_2(aq) \quad (R3)$$

$$\text{HO}_2(aq) + \text{O}_2^-(aq)(+\text{H}_2\text{O}(l)) \rightarrow \text{H}_2\text{O}_2(aq) + \text{O}_2(aq) + \text{OH}^-(aq) \quad (R4)$$

$$\text{O}_2^-(aq)(+\text{H}_2\text{O}(l)) \rightarrow \text{OH}^-(aq) + \text{OH}(aq) + 2\text{O}_2 \quad (R5)$$

The equations used to calculate the theoretical increase in γ$_{\text{HO}_2}$ with increasing pH, as proposed by Thornton et al. (2008), which have been compared with γ$_{\text{HO}_2}$ determined in this work (Sect. 3.1), are given by

$$\frac{1}{\gamma_{\text{HO}_2}} = \frac{1}{a_{\text{HO}_2}} + \frac{3\omega N_A}{8000(H_{\text{eff}}RT)^2k_{\text{eff}}[\text{HO}_2(g)]P} \quad (4)$$

where

$$H_{\text{eff}} = H_{\text{HO}_2}\left[1 + \frac{K_{\text{eq}}}{[\text{H}^+]\text{aq}}\right] \quad (5)$$

$$k_{\text{eff}} = \frac{k_3 + \left(\frac{K_{\text{eq}}}{[\text{H}^+]\text{aq}}\right)^2 k_4}{1 + \left(\frac{K_{\text{eq}}}{[\text{H}^+]\text{aq}}\right)^2} \quad (6)$$

The values used in Eqs. (4)–(6) to calculate γ$_{\text{HO}_2}$ are provided in Table 2.

2.4 Trajectory model

In addition to the modelling exercises, outlined in Sect. 2.2 above, an up-to-date chemistry process model, SPACCIM (SPrectral Aerosol Cloud Chemistry Interaction Model (Wolke et al., 2005)), has been used to simulate the gas-phase HO$_2$ radical concentrations along a trajectory during the mountain overflow of an air parcel passing an orographic hill cap cloud to further explore the heterogeneous loss processes occurring during the cloud events encountered. This model combines complex microphysical and detailed multi-phase chemistry, permitting a detailed description of the chemical processing of gases, deliquesced particles and cloud droplets. SPACCIM incorporates the MCMv3.1-CAPRAMv4.0a mechanism (Master Chemical Mechanism (Saunders et al., 2003)/Chemical Aqueous Phase RADical Mechanism (Tilgner et al., 2013; Braeuer et al., 2015)) with 11381 gas-phase and 7125 aqueous-phase reactions.

The measured meteorological data as well as the physical and chemical aerosol and gas-phase data at the upwind site in the village of Goldlauter provided the basis for the time-resolved initialisation of the model. In addition, separate initial box model runs with the MCM mechanism were performed to provide a more comprehensive initialisation of the chemical gas-phase composition at the simulation start. SPACCIM simulations were performed with an air parcel advected across a predefined orography – following the trajectory from the upwind site (Goldlauter) through the hill cap cloud, passing Mt Schmücke (summit site), to the downwind site (Gehlberg).Parcel simulations were performed every 20 min, allowing a time-resolved comparison of the predicted and measured HO$_2$ data at the summit site.

2.5 Global chemistry transport model

The GEOS-Chem model version 9.1.3 (www.geoschem.org) has been run to assess the global impact of the uptake of HO$_2$ by cloud droplets. The model was run at $2^\circ\times2.5^\circ$ global resolution for 2 years. The first year was considered a spin-up and has been ignored. The standard model includes uptake of HO$_2$ onto aerosols (with an uptake coefficient of 0.2), but the model has been updated in this work to include an uptake of HO$_2$ onto clouds. This is parameterised as a first-order loss onto clouds in a similar way to that onto aerosols following Schwartz (1984) using the temperature-dependent parameterisation of Thornton et al. (2008) with a cloud pH of 5. The cloud surface area is derived from the cloud liquid water in each model grid box (provided from the meteorological analyses) and cloud droplet radius is taken to be 6 µm over continents and 10 µm over oceans. Clouds below 258 K are assumed to be ice, and no uptake occurs. The parameterisation takes diffusional limitation in the gas phase into account, but not in the cloud phase. All simulations use the same cloud liquid water fields; thus, the impact of clouds on photolysis, wet deposition and transport is identical in all simulations.

3 Results and discussion

Near-continuous OH and HO$_2$ measurements were made at the Mt Schmücke site from 13 September to 19 October 2010, during which 35 separate orographic cloud events were encountered which lasted as little as 24 min to more than 2 days in duration. Figure 2 shows the time series of OH, HO$_2$, j(O$_1$D), NO, O$_3$ and liquid water content. OH con-
Table 2. The values used for the calculation of the theoretical uptake coefficient, black triangles, Fig. 5b, as a function of pH; values given at pH = 5 here.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (Temperature)</td>
<td>279 K</td>
<td>Mean HCCT-2010 temperature</td>
</tr>
<tr>
<td>H_{HO_2} (Henry’s law constant)</td>
<td>$1.72 \times 10^4 \text{ M atm}^{-1}$</td>
<td>At 279 K</td>
</tr>
<tr>
<td>H_{eff} (Effective Henry’s law constant)</td>
<td>$8.8 \times 10^3 \text{ M atm}^{-1}$</td>
<td>At 279 K, pH = 5</td>
</tr>
<tr>
<td>K_{eq} (Equilibrium constant associated with R2)</td>
<td>$4.2 \times 10^{-5} \text{ M}$</td>
<td>At 279 K</td>
</tr>
<tr>
<td>k_3 (Rate constant for reaction R3)</td>
<td>$8.6 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$</td>
<td>Bielski et al. (1985)</td>
</tr>
<tr>
<td>k_4 (Rate constant for reaction R4)</td>
<td>$1.0 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$</td>
<td>Bielski et al. (1985)</td>
</tr>
<tr>
<td>k_{eff} (Effective second-order rate constant)</td>
<td>$1.65 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$</td>
<td>At 279 K, pH = 5</td>
</tr>
<tr>
<td>γ_{HO_2} (Accommodation coefficient)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ω (Mean molecule speed of HO$_2$)</td>
<td>$64 000 \text{ cm s}^{-1}$</td>
<td>At 279 K</td>
</tr>
<tr>
<td>N_A (Avogadro’s number)</td>
<td>$6.02 \times 10^{23} \text{ mol}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>R (Universal gas constant)</td>
<td>$0.082057 \text{ atm L mol}^{-1} \text{K}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$[\text{HO}_2]$</td>
<td>$2 \times 10^7 \text{ molecule cm}^{-3}$</td>
<td></td>
</tr>
<tr>
<td>r_p (Particle radius)</td>
<td>6 μm</td>
<td>Mean cloud droplet radius</td>
</tr>
</tbody>
</table>

Figure 2. Time series showing the average liquid water content during each cloud episode (blue, horizontal lines), [OH] (purple), [HO$_2$] (red), j(O$_1^1$D) (orange), NO (green) and O$_3$ (grey). All data are the average concentrations determined for each FAGE data acquisition cycle, apart from OH concentrations, which are hourly.

Concentrations were close to or below the limit of detection (LOD) of the instrument for much of the measurement period. A clear diurnal signal was only observable when several days of data were averaged together outside of cloud events (Fig. 3). The peak OH concentration was observed at midday at $\sim 1 \times 10^6 \text{ molecule cm}^{-3}$. No clear OH diurnal profile was observed during cloud events. HO$_2$ concentrations were variable, depending on whether the site was in cloud or not. The average diurnal peak concentration of HO$_2$ was $\sim 4 \times 10^7 \text{ molecule cm}^{-3}$ outside of cloud events (Fig. 3). A diurnal profile of HO$_2$ was also observed when sampling within clouds with peak concentrations reduced by approximately 90% on average. The measured rate of ozone photolysis, j(O$_1^1$D), varied with time of day and cloud thickness. Daily peak photolysis rates were $8.8 \times 10^{-6} \text{ s}^{-1}$ and $4.1 \times 10^{-6} \text{ s}^{-1}$ outside and within clouds, respectively. Clouds thus reduced photolysis rates by $\sim 60 \%$.

Figure 4 shows the dependence of measured HO$_2$ concentration on cloud droplet surface area for all daytime cloud events. The observed HO$_2$ concentration has been divided by the observed j(O$_1^1$D) to remove the impact of the changing photolysis rates within the cloud. This ratio has then been normalised to 1 when the droplet surface area was zero and plotted against the cloud droplet surface area. The decrease in the ratio with increasing droplet surface area suggests that in addition to the reduction in HO$_2$ caused by a reduction in the photolysis rates within clouds, there is a further loss process of HO$_2$ that increases with cloud droplet surface area. A similar decrease in the ratio is also observed with increasing liquid water (not shown). From these observations it becomes
Figure 3. Average diurnal profiles of j (O$_1$D, OH and HO$_2$) in cloud (grey) and out of cloud (coloured). The error bars represent the 1σ variability of the averaged data; only the variability in the out-of-cloud radical data is shown for clarity. Each data point represents 10 min averaged data apart from the OH, for which the hourly averaged data are given.

Figure 4. The dependence of the measured HO$_2$ concentration as a function of cloud droplet surface area. To remove the influence of changing photolysis rates, the measured HO$_2$ concentrations have been divided by the correspondingly observed rate of photolysis of ozone (j(O$_1$D)). This ratio has then been normalised to give a value of 1 when the droplet surface area was zero. The systematic decrease in this normalised ratio with increasing droplet surface area suggests that in addition to the reduction in HO$_2$ caused by a reduction in the photolysis rates within clouds, there is a further loss process that increases with cloud droplet surface area. The ratio decreases linearly with increasing droplet surface area up to 1500 cm2 m$^{-3}$, with the line of best fit being ratio = 1–5 × 10$^{-4}$ × SA.

An insight into the mechanism by which HO$_2$ is lost to clouds is demonstrated by the dependence of the measured HO$_2$ concentration as a function of cloud water pH (Fig. 5a). Throughout the project the pH of the cloud water was recorded every hour and ranged from 3.4 to 5.3. The lowest in-cloud HO$_2$ occurred in clouds with the highest cloud water pH, suggesting that the solubility of HO$_2$ was enhanced at higher pH, as might be expected given that HO$_2$ is a weak acid.

3.1 Determining the uptake coefficient for HO$_2$ to cloud droplets

The analytical expression derived by Carslaw et al. (1999), and given in Eq. (3), has been used to estimate HO$_2$ concentrations both in and out of cloud events (Fig. 6). The expression represents reasonably well the campaign mean diurnal observation of HO$_2$ outside of the cloud events during the daytime (red dashed line and shading). During cloud events, however, the model (black dashed line and shading) overestimates the observed (grey line) HO$_2$ throughout the day. The inclusion of a first-order loss process ($k_{Loss} = 0.14$ s$^{-1}$) in the analytical expression is able to bring the observations and calculation into better agreement on average. The cloud droplet surface area was variable during the different cloud events encountered (1.2 ± 0.4 × 103 cm2 m$^{-3}$), although no diurnal trend in this parameter was evident. A clear anti-correlation between the observed HO$_2$ concentration and droplet surface area was observed and this correlation could only be reproduced by the analytical expression by increasing k_{Loss} in the model from 2.0 × 10$^{-2}$ s$^{-1}$ to 3.5 × 10$^{-1}$ s$^{-1}$.
as the surface area increased from $1.2 \times 10^2 \text{ cm}^2 \text{ m}^{-3}$ to $1.5 \times 10^3 \text{ cm}^2 \text{ m}^{-3}$ (Fig. 7).

This first-order loss rate can be converted into an uptake coefficient (γ_{HO_2}) using Eq. (7) (Schwartz, 1984). Using campaign mean values for a cloud surface area (A) of $1.2 \times 10^3 \text{ cm}^2 \text{ m}^{-3}$, a droplet radius ($r_p$) of 6 μm, a gas-phase diffusion constant for HO$_2$ (D_g) of 0.25 cm2 s$^{-1}$, and a molecular speed of HO$_2$ (ω) of 64 000 cm s$^{-1}$, gives an uptake coefficient of 0.01; the uptake coefficient as a function of cloud droplet surface area is presented in the upper panel of Fig. 7.

$$k_{\text{loss}} = \left(\frac{r_p}{D_g} + \frac{4}{\gamma_{\text{HO}_2} \omega} \right)^{-1} A$$

These derived uptake coefficients are in good agreement with laboratory studies (Abbatt et al., 2012), including recent measurements in our laboratory, which ranged from 0.003 to 0.02, for heterogeneous loss of HO$_2$ on aqueous (NH$_4$)$_2$SO$_4$, NaCl and NH$_4$NO$_3$ sub-micron aerosols (George et al., 2013). This methodology provides, for the first time, a direct field assessment of the heterogeneous rate of loss of HO$_2$.

Repeating this analysis but splitting the observations by cloud pH leads to values of γ_{HO_2} ranging from 1.65×10^{-3} at a pH of 3.7 to 8.84×10^{-2} at a pH of 5.2 (Fig. 5b). These values are in good agreement with those calculated by Thornton et al. (2008), suggesting that the Thornton mechanism (which is based entirely on the known aqueous-phase chemistry) is in play in real clouds and that it can be used to estimate the heterogeneous loss of HO$_2$ to cloud surfaces in the troposphere.

SPACCIM simulations (Wolke et al., 2005) have also been carried out, focusing on one particular cloud event which fulfilled the required meteorological and connected flow conditions for the cloud passage experiment (additional simulations relating to the other cloud events encountered during HCCT will be presented in future publications). The modelled and measured HO$_2$ concentrations at Mt Schmücke during the cloud event, FCE1.1, are presented in Fig. 8. Comparisons between modelled and measured concentrations demonstrate that the simulated HO$_2$ concentrations are in a similar range as the measurements. The mean simulated HO$_2$ concentrations of 3.1×10^6 molecule cm$^{-3}$ for FCE1.1 are a factor of 1.4 greater than the HO$_2$ measurements which were, on average, 2.2×10^6 molecule cm$^{-3}$ during this particular cloud event. A further trajectory model simulation has also been run and compared to measured HO$_2$ concentrations at Mt Schmücke during a non-cloud event, NCE0.8. Figure 9 reveals that the model is able to reproduce the modelled HO$_2$ concentrations well and tracks the temporal concentration.
profile throughout this event. The mean predicted HO2 concentration is just 24% smaller than the measurements.

The agreement between the trajectory modelled and measured in-cloud HO2 values confirms the significant reductions in radicals within clouds predicted by complex multi-phase box models in the past (Lelieveld and Crutzen, 1990; Tilgner et al., 2005, 2013) and supports the findings presented above. Importantly, the results imply that the phase transfer data for HO2 used within SPACCIM simulations, e.g. the applied mass accommodation coefficient ($\alpha_{\text{HO2}} = 10^{-2}$), are appropriate for reproducing the reduced HO2 concentrations for in-cloud conditions. These applied parameters control the uptake fluxes towards the aqueous phase and, ultimately, the aqueous-phase HO2 levels. Confidence in the values assumed for these parameters is essential to model in-cloud oxidation within the aqueous phase accurately, with the multi-phase chemistry of other important chemical sub-systems, such as the S(IV) to S(VI) conversion, the redox cycling of transition metal ions and the processing of organic compounds all heavily dependent upon the values taken.

3.2 Global impact of the uptake of HO2 onto cloud droplets

The GEOS-Chem (www.geos-chem.org) chemistry transport model has been used to assess the impact of the uptake of HO2 onto cloud droplets on the global oxidising capacity using the now field-validated mechanism of Thornton et al. (2008). To investigate both the impact of the uptake and whether H2O2 is produced, three simulations are run, (i) with no cloud uptake of HO2, (ii) with cloud uptake (an assumed pH of 5) of HO2 using the Thornton mechanism to produce H2O2, and (iii) with cloud uptake (assumed pH of 5) of HO2 to produce H2O. All simulations include HO2 uptake onto aerosol with γ_{HO2} of 0.2, which is the standard value used in GEOS-Chem (Martin et al., 2003; Macintyre and Evans, 2011).

Figure 10 shows the annual fractional change in surface HO2, OH, H2O2 and O3 concentrations with cloud uptake switched on, and with H2O2 being either produced or not. Column changes are shown in Fig. 11. Both with and without H2O2 production, the impact is most evident in areas with long HO2 lifetimes, i.e. regions with low NOx and low HO2 concentrations, and with significant cloud water densities (see Fig. 12). These are concentrated in the extra-tropics, with up to 25 and 10% reduction in surface and column concentrations respectively. The impact on the H2O2 concentration depends critically on whether H2O2 is produced or not within clouds. In the extra-tropics there are up to 30% increases in surface H2O2 if it is produced, with a similar reduction if it is not. The impacts on the surface extra-tropical oxidising capacity (OH) are of the order 10–20% for both cases, but changes to the column values are only significant in the case where H2O2 is not produced. Changes in O3 concentration are surprisingly small in both simulations. This reflects both the anti-correlation between NO concentrations and HO2 lifetimes, and the low cloud water densities over the polluted continental regions. The largest fractional changes in HO2 concentration occur in regions which are not producing O3. The change in the lifetime due to the HO2 uptake onto clouds thus has little impact on O3 production. The large surface impact of the cloud uptake primarily reflects uptake of HO2 by clouds at the surface (see Fig. 12a) rather than a transported impact of cloud processes from aloft.
Figure 10. Annually averaged fractional change in surface HO\textsubscript{2}, OH, H\textsubscript{2}O\textsubscript{2} and O\textsubscript{3} with the inclusion of HO\textsubscript{2} uptake into clouds leading to: (top) the production of H\textsubscript{2}O and (bottom) the production of H\textsubscript{2}O\textsubscript{2} assuming a cloud pH of 5 and the Thornton et al. (2008) parameterisation.

Figure 11. Annually averaged fractional change in column HO\textsubscript{2}, OH, H\textsubscript{2}O\textsubscript{2} and O\textsubscript{3} with the inclusion of HO\textsubscript{2} uptake into clouds leading to: (top) the production of H\textsubscript{2}O and (bottom) the production of H\textsubscript{2}O\textsubscript{2} assuming a cloud pH of 5 and the Thornton et al. (2008) parameterisation.
Figure 12. Annually averaged cloud water in the GEOS5 fields as (top) a column total and (bottom) a zonal mean.

downwards. The small impact on \(\mathrm{O}_3 \) is consistent with results of Liang and Jacob (1997). These simulations make a variety of approximations as outlined in Sect. 2.5. Given the complexity of representing cloud processes occurring over the length scale of metres to hundreds of metres in a comparatively low-resolution global model (hundreds of kilometres), there are significant uncertainties as to the magnitude of these impacts. Further work in higher-resolution cloud-resolving models will be needed to estimate the full impact of these processes. Nevertheless, our observations show that the uptake of \(\mathrm{HO}_2 \) onto clouds offers a substantial perturbation to the oxidising capacity on the local scale and that this perturbation may propagate into the regional and global scales.

4 Conclusions

We have shown here experimentally for the first time that the uptake of \(\mathrm{HO}_2 \) onto clouds can have a significant impact on the composition of the atmosphere in a way consistent with theoretical predictions. It seems likely, however, that chemistry occurring within clouds will have other currently unknown impacts on the composition of the atmosphere. Global and regional models need to be developed further to investigate these impacts, with predictive pH an especially important development. The impact of these processes may also change in the future with climate-induced impacts on the hydrological cycle. Further laboratory field studies and modelling are required to help resolve these remaining complex questions.

Acknowledgements. The authors would like to thank Trevor Ingham, John Spence and Matthew Broadbent for help with the development of the FAGE instrument to facilitate tower measurements. Thanks also to Birger Bohn for his useful comments on the in-cloud photolysis rates. HCCT-2010 was partially funded by the German Research Foundation (DFG), grant He 3086/15-1. Stephan Mertes’ participation was funded by the DFG, grant ME-3534/1-2. Lisa Whalley, Daniel Stone, Ingrid George, Mathew Evans and Dwayne Heard are grateful to the Natural Environment Research Council for funding.

Edited by: G. McFiggans

References

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO\textsubscript{2} detection to an interference from RO\textsubscript{2} radicals and introducing a novel approach that enables HO\textsubscript{2} and certain RO\textsubscript{2} types to be selectively measured, Atmos. Meas. Tech., 6, 3425–3440, doi:10.5194/amt-6-3425-2013, 2013.