Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 15, 2341-2365, 2015
https://doi.org/10.5194/acp-15-2341-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
04 Mar 2015
Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability
P. Hess1, D. Kinnison2, and Q. Tang3 1Cornell University, Department of Biological and Environmental Engineering, Ithaca, NY, USA
2National Center for Atmospheric Research, Boulder, CO, USA
3Lawrence Livermore National Laboratory, Livermore, CA, USA
Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4–NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30–90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño–Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.

Citation: Hess, P., Kinnison, D., and Tang, Q.: Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability, Atmos. Chem. Phys., 15, 2341-2365, https://doi.org/10.5194/acp-15-2341-2015, 2015.
Publications Copernicus
Download
Short summary
Using a series of model simulations, we find that at widespread NH extratropical locations, interannual tropospheric ozone variability is largely determined by the transport of ozone from the stratosphere. This has implications in the interpretation of measured tropospheric ozone variability in light of changes in the emissions of ozone precursors and in the response of tropospheric ozone to climate change.
Using a series of model simulations, we find that at widespread NH extratropical locations,...
Share