Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 5 | Copyright
Atmos. Chem. Phys., 15, 2247-2268, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2015

Research article | 02 Mar 2015

Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

S. D. D'Andrea1, J. C. Acosta Navarro2, S. C. Farina1, C. E. Scott3, A. Rap3, D. K. Farmer4, D. V. Spracklen3, I. Riipinen2,5, and J. R. Pierce1,6 S. D. D'Andrea et al.
  • 1Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
  • 2Department of Applied Environmental Science and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • 3School of Earth and Environment, University of Leeds, Leeds, UK
  • 4Department of Chemistry, Colorado State University, Fort Collins, CO, USA
  • 5Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
  • 6Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada

Abstract. Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors.

In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

Download & links
Publications Copernicus
Short summary
We use modeled estimates of BVOCs from the years 1000 to 2000 to test the effect of anthropogenic BVOC emission changes on SOA formation, aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS model. Changes of >25% in the number of particles with diameters >80nm are predicted regionally due to extensive land-use changes, leading to increases in combined radiative effect of >0.5 Wm-2. This change in radiative forcing could be an overlooked anthropogenic effect on climate.
We use modeled estimates of BVOCs from the years 1000 to 2000 to test the effect of...