Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 5
Atmos. Chem. Phys., 15, 2227–2246, 2015
https://doi.org/10.5194/acp-15-2227-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 2227–2246, 2015
https://doi.org/10.5194/acp-15-2227-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2015

Research article | 02 Mar 2015

Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

C. Viatte et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Camille Viatte on behalf of the Authors (28 Jan 2015)  Author's response    Manuscript
ED: Publish as is (30 Jan 2015) by Thomas von Clarmann
Publications Copernicus
Download
Short summary
Seven tropospheric species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO) released by biomass burning events transported to the high Arctic were monitored with two sets of FTIR measurements, located at Eureka (Nunavut, Canada) and Thule (Greenland), from 2008 to 2012. We compared these data sets with the MOZART-4 chemical transport model to help improve its simulations in the Arctic. Emission factors of these biomass burning products were derived and compared to the literature.
Seven tropospheric species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO) released by biomass...
Citation