Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 4
Atmos. Chem. Phys., 15, 1647–1660, 2015
https://doi.org/10.5194/acp-15-1647-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 1647–1660, 2015
https://doi.org/10.5194/acp-15-1647-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Feb 2015

Research article | 17 Feb 2015

Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar

I. Veselovskii1, D. N Whiteman2, M. Korenskiy1, A. Suvorina1, A. Kolgotin1, A. Lyapustin2, Y. Wang3, M. Chin2, H. Bian4, T. L. Kucsera2,3, D. Pérez-Ramírez2,3, and B. Holben2 I. Veselovskii et al.
  • 1Physics Instrumentation Center of General Physics Institute, Troitsk, Moscow, Russia
  • 2NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 3Universities Space Research Association, Columbia, MD, USA
  • 4Joint Center for Environmental Technology UMBC, Baltimore, MD, USA

Abstract. The multi-wavelength lidar technique was applied to the study of a smoke event near Washington, DC on 26–28 August 2013. Satellite observations combined with transport model predictions imply that the smoke plume originated mainly from Wyoming/Idaho forest fires and its transportation to Washington, DC took approximately 5 days. The NASA Goddard Space Flight Center (GSFC) multi-wavelength Mie–Raman lidar was used to measure the smoke particle intensive parameters such as extinction and backscatter Ångström exponents together with lidar ratios at 355 and 532 nm wavelengths. For interpretation of the observed vertical profiles of the backscatter Ångström exponents γβ at 355–532 and 532–1064 nm, numerical simulation was performed. The results indicate that, for fine-mode dominant aerosols, the Ångström exponents γβ(355–532) and γβ(532–1064) have essentially different dependence on the particle size and refractive index. Inversion of 3 β + 2 α lidar observations on 27–28 August provided vertical variation of the particle volume, effective radius and the real part of the refractive index through the planetary boundary layer (PBL) and the smoke layer. The particle effective radius decreased with height from approximately 0.27 μm inside the PBL to 0.15 μm in the smoke layer, which was situated above the PBL. Simultaneously the real part of the refractive index in the smoke layer increased to mR ≈ 1.5. The retrievals demonstrate also that the fine mode is predominant in the particle size distribution, and that the decrease of the effective radius with height is due to a shift of the fine mode toward smaller radii.

Publications Copernicus
Download
Short summary
The multi-wavelength lidar technique was applied to the study of a smoke event near Washington, DC on 26-28 August 2013. Satellite observations combined with transport model predictions imply that the smoke plume originated mainly from Wyoming/Idaho forest fires. The NASA GSFC multi-wavelength Mie-Raman lidar was used to profile the smoke particle parameters such as volume density, effective radius and the real part of the refractive index.
The multi-wavelength lidar technique was applied to the study of a smoke event near Washington,...
Citation