Supplement of

Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways

T. F. Bidleman et al.

Correspondence to: T. F. Bidleman (terry.bidleman@umu.se)
Enantiomer separations by capillary gas chromatography

Enantiomer separations of α-HCH, TC and CC were carried out on Betadex-120 (BDX, 20% permethylated β-cyclodextrin in SPB-25, 30 m x 0.25 mm i.d., 0.25 μm film, Supelco, Bellefonte, PA, U.S.A.) or BGB-172 (BGB, 20% tert-butyldimethylsilyl-α-cyclodextrin in OV-1701, 15 m x 0.25 mm i.d., 0.25 μm film, BGB Analytik AG, Switzerland), with detection by electron capture negative ion mass spectrometry. Instruments used were a Hewlett-Packard 5890 GC-5989 MS-Engine (Hewlett-Packard, U.S.A.) or Agilent 6890 GC-5973 Mass Selective Detector (MSD). Operating conditions were: injector (splitless, opened after 1 min) 220 °C, ion source 150 °C, quadrupole 100 °C, helium carrier gas at 40-60 cm s⁻¹, methane reagent gas. Temperature programs were varied according to the analytes and condition of the column. In general, slower ramp times and/or lower oven temperatures were used to improve enantiomer resolutions on aged columns. Typical programs were (Kurt-Karakus et al., 2005):

- Chlordane on BDX: 90 °C (1 min), 15 °C min⁻¹ to 150 °C, 1 °C min⁻¹ to 185 °C (25 min), 20 °C min⁻¹ to 225 °C (20 min).
- Chlordanes and α-HCH on BGB: 90 °C (1 min), 20 °C min⁻¹ to 160 °C, 2 °C min⁻¹ to 180 °C (41 min), 25 °C min⁻¹ to 225 °C (15 min).
- α-HCH on BDX: 90 °C (1 min), 20 °C min⁻¹ to 145 °C, 1 °C min⁻¹ to 170 °C, 20 °C min⁻¹ to 225 °C (15 min).

Chromatographic peaks were integrated manually at each of the two monitored ions. Target/qualifier ion ratios (IRs) for each enantiomer peak were required to fall within the 95% C.I. of IRs for standards, otherwise, the result was rejected (Kurt-Karakus et al., 2005).
Figure S1. Air parcel trajectories 72 h backward from Alert (red square) and at 10 m height for July 31-August 1 to October 15 (weeks 31-42) (Canadian Meteorological Centre).
Figure S2. EFs of α-HCH versus fraction of ice cover in the Canadian Archipelago and southern Beaufort Sea (A, $r^2 = 0.061$) and air concentration (B, $r^2 = 0.042$).
Figure S3. EFs of TC (A, $r^2 = 0.16$) and CC (B, $r^2 = 0.0012$) versus fraction of TC, $F_{TC} = TC/(TC+CC)$.
Figure S4. EFs of TC (A, $r^2 = 0.039$) and CC (B, $r^2 = 0.0012$) versus air concentrations.
Figure S5. EFs of TC (A, $r^2 = 0.44$) and CC (B, $r^2 = 0.044$) versus fraction of ice cover in the Canadian Archipelago and southern Beaufort Sea.
Figure S6. Frequency distributions of EFs

- alpha-HCH
- cis-chlordane
- trans-chlordane

Enantiomer fraction

All samples

June-October samples

November-May samples