Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 3
Atmos. Chem. Phys., 15, 1289-1298, 2015
https://doi.org/10.5194/acp-15-1289-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Pan European Gas-Aerosols Climate Interaction Study...

Atmos. Chem. Phys., 15, 1289-1298, 2015
https://doi.org/10.5194/acp-15-1289-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Feb 2015

Research article | 06 Feb 2015

Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production

J. Kaiser et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jennifer Kaiser on behalf of the Authors (19 Dec 2014)  Author's response    Manuscript
ED: Publish as is (12 Jan 2015) by Eiko Nemitz
Publications Copernicus
Download
Short summary
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show that VOC oxidation alone cannot account for the formaldehyde concentrations observed in the morning over rural Italy. Vertical profiles suggest a ground-level source of HCHO. Incorporating this additional HCHO source into a photochemical model increases calculated O3 production by as much as 12%.
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show...
Citation