Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 15, issue 22
Atmos. Chem. Phys., 15, 12741-12763, 2015
https://doi.org/10.5194/acp-15-12741-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Results from the ice nucleation research unit (INUIT) (ACP/AMT...

Atmos. Chem. Phys., 15, 12741-12763, 2015
https://doi.org/10.5194/acp-15-12741-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Nov 2015

Research article | 18 Nov 2015

New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

K. Diehl and S. K. Mitra K. Diehl and S. K. Mitra
  • Institute of Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

Abstract. Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1) a particle-type-dependent parameterization of immersion freezing using the numbers of active sites per mass, (2) a particle-type and size-resolved parameterization of contact freezing, and (3) a particle-type-dependent description of deposition freezing. The modified microphysical scheme was embedded in an adiabatic air parcel model with entrainment. Sensitivity studies were performed to simulate convective situations and to investigate the impact of ice nuclei concentrations and types on ice formation. As a central diagnostic parameter, the ice water fraction (IWF) was selected, which is the relation of the ice water content to the total amount of water in the condensed form. The following parameters were varied: initial aerosol particle number size distributions, types of ice nucleating particles, final temperature, and the fractions of potential ice nucleating particles. Single and coupled freezing processes were investigated. The results show that immersion freezing seems to be the most efficient process. Contact freezing is constrained by the collision kernel between supercooled drops and potential ice nucleating particles. The importance of deposition freezing lies in secondary ice formation; i.e., small ice particles produced by deposition nucleation trigger the freezing of supercooled drops by collisions. Thus, a broader ice particle spectrum is generated than that by immersion and contact freezing. During coupled immersion–contact and contact–deposition freezing no competition was observed, and both processes contribute to cloud ice formation but do not impede each other. As already suggested in the literature, mineral dust particles seem to be the most important ice nucleating particles. Biological particles are probably not involved in significant ice formation. The sensitive parameters affecting cloud properties are temperature, aerosol particle composition and concentration, and particle size distribution.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Special issue
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In mid-latitudes, the major fraction of precipitation is initiated via the ice phase. Cloud model simulations estimated the role of aerosol particle types and heterogeneous freezing modes on the ice phase. The results show that the formation of mixed-phase and ice clouds is promoted by the immersion freezing mode, broad drop size spectra containing small as well as large drops, insoluble particles composed by bacteria, feldspar, and illite, and temperatures below -25°C.
In mid-latitudes, the major fraction of precipitation is initiated via the ice phase. Cloud...
Citation
Share