Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 21
Atmos. Chem. Phys., 15, 12519-12545, 2015
https://doi.org/10.5194/acp-15-12519-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Ten years of Ozone Monitoring Instrument (OMI) observations...

Atmos. Chem. Phys., 15, 12519-12545, 2015
https://doi.org/10.5194/acp-15-12519-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Nov 2015

Research article | 10 Nov 2015

Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

I. De Smedt1, T. Stavrakou1, F. Hendrick1, T. Danckaert1, T. Vlemmix1, G. Pinardi1, N. Theys1, C. Lerot1, C. Gielen1, C. Vigouroux1, C. Hermans1, C. Fayt1, P. Veefkind2, J.-F. Müller1, and M. Van Roozendael1 I. De Smedt et al.
  • 1Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
  • 2Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

Abstract. We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV–visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2–O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004–2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed, such as an increase of the columns in India and central–eastern China, and a decrease in the eastern US and Europe. We find that the higher horizontal resolution of OMI combined with a better sampling and a more favourable illumination at midday allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

Publications Copernicus
Special issue
Download
Short summary
We present the new version of the BIRA-IASB algorithm for the retrieval of H2CO columns from OMI and GOME-2A and B measurements. Validation results at seven stations in Europe, China and Africa confirm the capacity of the satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in Beijing and in Bujumbura are used for a more detailed validation exercise. Finally trends are estimated using 10 years of OMI observations.
We present the new version of the BIRA-IASB algorithm for the retrieval of H2CO columns from OMI...
Citation
Share