Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
3State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
4Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
5Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 4410125, China
6College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
7Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
8Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
9College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650224, China
10Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
11Nature Resource and Environment College, Northwest A&F University, Yangling 712100, China
12Institute of Agricultural Environmental and Resource, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
13College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210009, China
14College of Resources and Environment, Southwest University, Chongqing 400716, China
15College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
16South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
17Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
18College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
19College of Agriculture, Hunan Agricultural University, Changsha 410128, China
20College of Resources and Environment, Agricultural University of Hebei, Baoding 071001, China
21College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
22Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
23Institute of Mountain, Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
24Research Institute of Soil & Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
25The Bureau of Qinghai Meteorology, Xining 810001, China
26Agriculture, Forestry and Water Department of Changdao County, Changdao 265800, China
27State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China
28Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
29Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
30The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ, UK
31Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031, China
32Institute of Soil and Fertilizer, Jilin Academy of Agricultural Sciences, Changchun 130124, China

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract. A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH$_3$, NO$_2$, and HNO$_3$ and particulate NH$_4^+$ and NO$_3^-$ in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of N$_i$ species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric N$_i$ concentrations and dry and wet/bulk N$_i$ deposition. On a national basis, the annual average concentrations (1.3–47.0 µg N m$^{-3}$) and dry plus wet/bulk deposition fluxes (2.9–83.3 kg N ha$^{-1}$ yr$^{-1}$) of inorganic N$_i$ species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic N$_i$ emission. Average dry and wet/bulk N$_i$ deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha$^{-1}$ yr$^{-1}$ across China, with reduced N$_i$ deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N$_i$ deposition is equally important to wet/bulk N$_i$ deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N$_i$ deposition on environment and ecosystem health.

1 Introduction

Humans continue to accelerate the global nitrogen (N) cycle at a record pace as rates of anthropogenic reactive nitrogen (N$_r$) fixation have increased 20-fold over the last century (Galloway et al., 2008). New N$_r$ from anthropogenic fixation is formed primarily through cultivation of N-fixing legumes, the Haber–Bosch process, and combustion of fossil fuel (Galloway et al., 2013). As more N$_r$ have been created, emissions of N$_r$ (NO$_x$ = NO + NO$_2$, and NH$_3$) to the atmosphere have increased from approximately 34 Tg N yr$^{-1}$ in 1860 to 109 Tg N yr$^{-1}$ in 2010 (Fowler et al., 2013; Galloway et al., 2004); most of this emitted N$_r$ is deposited back to land and water bodies. As an essential nutrient, N supplied by atmospheric deposition is useful for all life forms in the biosphere, and may stimulate primary production in an ecosystem if it does not exceed the ecosystem-dependent critical load (Liu et al., 2010, 2011). However, long-term high levels of atmospheric N$_r$ and its deposition can reduce biological diversity (Clark and Tilman, 2008), degrade human health (Richer et al., 2005), alter soil and water chemistry (Vitousek et al., 1997) and influence the greenhouse gas balance (Matson et al., 2002).

Nitrogen deposition occurs via dry and wet processes. Neglecting dry deposition can lead to substantial underestimation of total flux as dry deposition can contribute up to two-thirds of total N deposition (Flechard et al., 2011; Vet et al., 2014). For quantification of atmospheric deposition at the national scale, long-term monitoring networks such as CAPMoN (Canadian Air and Precipitation Monitoring Network, Canada), CASTNET/NADP (Clean Air Status and Trends Network/the National Atmospheric Deposition Program, United States), EMEP (European Monitoring and Evaluation Programme, Europe), and EANET (Acid Deposition Monitoring Network in East Asia) have been established; such networks are essential for quantification of both wet and dry deposition and revealing long-term trends and spatial patterns under major environmental and climate change (Skeffington and Hill, 2012). Wet deposition, by means of rain or snow, is relatively easily measured in existing networks. In contrast, dry deposition of gases and particulate matter is much more difficult to measure, and strongly influenced by factors such as surface roughness, surface wetness, and climate and environmental factors (Erisman et al., 2005). Direct methods (e.g., eddy correlation, chambers) and indirect methods (e.g., inferential, gradient analysis) can determine dry deposition fluxes (Seinfeld and Pandis, 2006). The inferential method is widely used in many monitoring networks (e.g., CASTNET and EANET), where dry deposition rates are derived from measured ambient concentrations of N$_i$ species and computed deposition velocities (Endo et al., 2011; Holland et al., 2005; Pan et al., 2012). Additionally, atmospheric modeling has been used as an operational tool to upscale results from sites to regions where no measurements are available (Flechard et al., 2011; Zhao et al., 2015).

According to long-term trends observed by the above monitoring networks, N$_i$ deposition has decreased over the last 2 decades in Europe (EEA, 2011). Measurements of wet deposition in the United States show a strong decrease in NO$_3$–N deposition over most of the country (Du et al., 2014), but NH$_4$–N deposition increased in agricultural regions. China, as one of the most rapidly developing countries in East Asia, has witnessed serious atmospheric N$_r$ pollution since the late 1970s (Hu et al., 2010; Liu et al., 2011). Accurate quantification of N$_i$ deposition is key to assessing its ecological impacts on terrestrial ecosystems (Liu et al., 2011). Previous modeling studies (e.g., Dentener et al., 2006; Gal-
loway et al., 2008; Vet et al., 2014) suggested that central-east China was a global hotspot for N deposition. More recently, based on meta-analyses of historic literature, both Liu et al. (2013) and Jia et al. (2014) reported a significant increase in N wet/bulk deposition in China since the 1980s or 1990s. However, most measurements in China only reported wet/bulk deposition (e.g., Chen and Mulder, 2007; Huang et al., 2013; Zhu et al., 2015) and/or dry deposition (Luo et al., 2013; Shen et al., 2009; Pan et al., 2012) at a local or regional scale. Although national N deposition has been investigated by Lü and Tian (2007, 2014), the deposition fluxes were largely underestimated due to the inclusion only of gaseous NO2 in dry deposition, and not NH3, HNO3, particulate ammonium and nitrate, etc. Therefore, the magnitude and spatial patterns of in situ measured N wet/bulk and dry deposition across China are still not clear.

Against such a background, we have established a Nationwide Nitrogen Deposition Monitoring Network (NNDMN) in China since 2010, measuring both wet/bulk and dry deposition. The NNDMN consists of 43 in situ monitoring sites, covering urban, rural (cropland), and background (coastal, forest, and grassland) areas across China. The focus of the network is to conduct high-quality measurements of atmospheric N\textsubscript{r} in gases, particles, and precipitation. These data provide a unique and valuable quantitative description of N\textsubscript{r} deposition in China, but have never been published as a whole. The objectives of this study were therefore to (1) obtain the first quantitative information on atmospheric N\textsubscript{r} concentrations and pollution status across China, and (2) analyze overall fluxes and spatial variations of N wet/bulk and dry deposition in relation to anthropogenic N\textsubscript{r} emissions from different regions.

2 Materials and methods

2.1 Sampling sites

The distribution of the 43 monitoring sites in the NNDMN is shown in Fig. 1. Although sampling periods varied between sites, most of our monitoring started from 2010 to 2014 (see Supplement for details). The NNDMN comprises 10 urban sites, 22 rural sites, and 11 background sites (Table S1 of the Supplement). To better analyze atmospheric N deposition results among the sites, we divided the 43 sites into six regions: north China (NC, 13 sites), northeast China (NE, 5 sites); northwest China (NW, 6 sites), southeast China (SE, 11 sites), southwest China (SW, 6 sites), and the Tibetan Plateau (TP, 2 sites), representing China’s various social-economic and geo-climatic regions (for details, see Sect. S1 of the Supplement). The sites in the six regions are described using region codes (i.e., NC, NE, NW, SE, SW, TP) plus site numbers such as NC1, NC2, NC3, NE1, NE2, etc. The longitudes and latitudes of all 43 sites ranged from 83.71 to 129.25°E, and from 21.26 to 50.78°N, respectively. Annual mean rainfall ranged from 170 to 1748 mm and the annual mean air temperature ranged from −6.2 to 23.2°C. Site names, land use types and population densities are summarized in Table S1 of the Supplement. More detailed information on the monitoring sites, such as specific locations, surrounding environment and possible emission sources are provided in Sect. S2 of the Supplement.

2.2 Collection of gaseous and particulate N\textsubscript{r} samples

In this study ambient N\textsubscript{r} concentrations of gaseous NH3, NO2 and HNO3, and particulate NH4+ (pNH4+) and NO3− (pNO3−) were measured monthly at the 43 sites using con-
ties active and passive samplers. DELTA active sampling systems (DEnder for Long-Term Atmospheric sampling; described in detail in Flechard et al., 2011 and Sutton et al., 2001) were used to collect NH$_3$, HNO$_3$, pNH$_4$ and pNO$_3$; NO$_2$ samples were collected using Gradko diffusion tubes (Gradko International Limited, UK) at all sampling sites. The air intakes of the DELTA systems and the NO$_2$ tubes were set at a height of 2 m above the ground (at least 0.5 m higher than the canopy height) at most sites. At a few sites, the DELTA systems could not be used due to power constraints. Therefore, NH$_3$ samples were collected using ALPHA passive samplers (Adapted Low-cost High Absorption; designed by the Center for Ecology and Hydrology, Edinburgh, UK), while the pNH$_4$ and pNO$_3$ in PM$_{10}$ were collected using particulate samplers (TSH-16 or TH-150III, Wuhan Tianhong Corp., Wuhan, China). However, HNO$_3$ measurements were not performed due to lack of corresponding passive samplers. Briefly, all the measurements of N$_r$ concentration were based on monthly sampling (one sample per month for each N$_r$ species) except at the very few sites without DELTA systems, where pNH$_4$ and pNO$_3$ samples were calculated from daily sampling transformed to monthly averaged data. Detailed information on measuring methods, sample replication and collection are given in Sect. S3 of the Supplement.

2.3 Collection of precipitation

At all monitoring sites precipitation (here we define it as wet/bulk deposition, which contains wet and part dry deposition) samples were collected using precipitation gauges (SDM6, Tianjin Weather Equipment Inc., China) located beside the DELTA systems (ca. 2 m). The collector, consisting of a stainless steel funnel and glass bottle (vol. 2000–2500 mL), collects precipitation (rainwater, snow) without a power supply. Precipitation amount was measured using a graduated cylinder (scale range: 0–10 mm; division: 0.1 mm) coupled with the gauge. After each daily (08:00–08:00 next day, Greenwich Mean Time +8) event, the collected samples were thoroughly mixed and then immediately stored in clean polyethylene bottles (50 mL). All collected samples (including melted snow) samples were frozen at −18 °C at each site until delivery to the laboratory at China Agricultural University (CAU) for analysis of inorganic N (NH$_4$ and NO$_3$). The gauges were cleaned with high-purity water after each collection and once every week in order to avoid cross contamination.

2.4 Analytical procedures

In CAU’s analytical laboratory, the exposed sampling trains of the DELTA systems and passive samples were stored at 4 °C and analyzed at 1-month intervals. The HNO$_3$ denuders and alkaline-coated filters were extracted with 10 mL 0.05% H$_2$O$_2$ in aqueous solution. The NH$_3$ denuders and acid-coated filters, and ALPHA samplers were extracted with 10 mL high-purity water. The loaded PM$_{10}$ filters were extracted with 50 mL high-purity water by ultrasonication for 30–60 min and then filtered through a syringe filter (0.45 µm, Tenga Inc., Tianjin, China). Ammonium (NH$_4^+$) and nitrate (NO$_3^-$) in the extracted and filtered solutions were measured with an AA3 continuous-flow analyzer (Bran+Luebbe GmbH, Norderstedt, Germany). The detection limits were 0.01 mg N L$^{-1}$ for NH$_4^+$ and NO$_3^-$ It should be noted that NO$_3^-$ was converted to NO$_2^-$ during the chemical analysis. Therefore, NO$_2^-$ here was included in the analysis, and NO$_3^-$ is equal to the sum of NO$_2^-$ and NO$_3^-$.

The disks from the Gradko samplers were extracted with a solution containing sulfuric acid, H$_2$PO$_4$ and N-1-Naphthylethylene-diamine, and the NO$_3^-$ content in the extract determined using a colorimetric method by absorption at a wavelength of 542 nm. The detection limit for NO$_2^-$ was 0.01 mg N L$^{-1}$. Three laboratory and three field blank samples were extracted and analyzed using the same methods as the exposed samples. After correcting for the corresponding blanks, the results were used for the calculation of ambient concentrations of gaseous and particulate N$_r$. Each collected precipitation sample was filtered with a 0.45 µm syringe filter, and 15 mL filtrates frozen and stored in polypropylene bottles until chemical analysis within 1 month. The NH$_4^+$ and NO$_3^-$ concentrations of the filtrates were determined using an AA3 continuous-flow analyzer as described above.

2.5 Deposition flux estimation

The inferential technique, which combines the measured concentration and a modeled dry deposition velocity (V_d), was used to estimate the dry deposition fluxes of N$_r$ species (Schwede et al., 2011; Pan et al., 2012). The concentrations of gases (HNO$_3$, NO$_2$, and NH$_3$) and aerosols (NH$_4^+$ and NO$_3^-$) were measured as described in Sect. 2.2. The monthly average V_d over China was calculated by the GEOS (Goddard Earth Observing System)-Chem chemical transport model (CTM) (Bey et al., 2001; http://geos-chem.org). The GEOS-Chem CTM is driven by GEOS-5 assimilated meteorological data from the NASA Global Modeling and Assimilation Office (GMAO) with a horizontal resolution of 1/2° latitude × 2/3° longitude and 6 h temporal resolution (3 h for surface variables and mixing depths). We used a nested-grid version of GEOS-Chem for Asia that has the native 1/2° × 2/3° resolution over East Asia (70–150° E, 11° S–55° N) (Chen et al., 2009). The nested model has been applied to examine atmospheric N deposition to the northwest-
ern Pacific (Zhao et al., 2015), and a similar nested model for North America has been used to analyze N deposition over the United States (L. Zhang et al., 2012; Ellis et al., 2013). The model calculation of dry deposition of N\textsubscript{r} species follows a standard big-leaf resistance-in-series model as described by Wesely (1989) for gases and Zhang et al. (2001) for aerosol. For a detailed description of the V_d calculation as well as the estimation of N dry deposition, the reader is referred to the Supplement (Sect. S5), with monthly and annual dry deposition velocities of N\textsubscript{r} for different land use types presented in Tables S3 and S4 therein. The model uses the land map of the Global Land Cover Characteristics Data Base Version 2.0 (http://edc2.usgs.gov/glcc/globdoc2_0.php), which defines the land types (urban, forest, etc.) at the native 1 km × 1 km resolution and is then binned to the model resolution as a fraction of the grid cell covered by each land type. The model 1/2° resolution may coarsely represent the local land characteristics at the monitoring sites. Future work using a single-point dry deposition model as for CASTNET (Clarke et al., 1997) would further improve the dry deposition flux estimates, but that requires concurrent in situ measurements of meteorological variables, which are not available at present.

Wet/bulk N deposition flux was calculated as the product of the precipitation amount and the concentration of N\textsubscript{r} species in precipitation, using the following Eqs. (1) and (2)

$$C_w = \frac{\sum_{i=1}^{n} (C_i P_i)}{\sum_{i=1}^{n} P_i}, \tag{1}$$

where C_w is the volume-weighted mean (VWM) concentration (mg N L-1) calculated from the n precipitation samples within a month or a year, and the individual sample concentration C_i is weighted by the rainfall amount P_i for each sample.

$$D_w = P_i C_w / 100 \tag{2}$$

where D_w is the wet/bulk deposition flux (kg N ha-1), P_i is the total amount of all precipitation events (mm), and 100 is a unit conversion factor.

2.6 Statistics

A one-way analysis of variance (ANOVA) and non-parametric t tests were conducted to examine the differences in the investigated variables between sites (urban, rural, and background) and between the six regions. Linear regression analysis was used to analyze the relationships among annual wet N deposition flux, annual precipitation amount, and annual VWM concentration of inorganic N in precipitation. All analyses were performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). Statistically significant differences were set at P values < 0.05.

3 Results

3.1 Concentrations of N\textsubscript{r} species in air

Monthly mean concentrations of NH\textsubscript{3}, NO\textsubscript{2}, HNO\textsubscript{3}, pNH\textsubscript{4}+ and pNO\textsubscript{3}− were 0.08–34.8, 0.13–33.4, 0.02–4.90, 0.02–55.0 and 0.02–32.1 µg N m-3, respectively (Fig. S2a–e, Supplement). The annual mean concentrations of gaseous and particulate N\textsubscript{r} were calculated for each site from the monthly N\textsubscript{r} concentrations (Fig. 2a), and further were averaged for land use types in the six regions (Fig. 3a–e) and the whole nation (Fig. 4a) according to geographical location and the classification of each site.

Annual mean NH\textsubscript{3} concentrations ranged from 0.3 to 13.1 µg N m-3, with an overall average value of 6.1 µg N m-3. In NC, SE, and SW, the NH\textsubscript{3} concentrations at the urban sites (average for the three regions, 9.5 ± 2.1 µg N m-3) were about one-third higher than at the rural sites (6.2 ± 2.3 µg N m-3) and were almost twice of those at the background sites (4.8 ± 1.4 µg N m-3), whereas in NE and NW NH\textsubscript{3} concentrations were lower at the urban sites (average of the two regions, 5.5 ± 3.2 µg N m-3) than at the rural sites (8.8 ± 0.3 µg N m-3) but 4.6 times greater than at the background sites (1.2 ± 0.5 µg N m-3). Comparing land use types by region, annual NH\textsubscript{3} concentrations at the rural sites in northern regions (NC, NE, and NW) were approximately equal, which on average were 1.8 times greater than the average of southern rural sites. In contrast, annual NH\textsubscript{3} concentrations at urban and background sites...
ranked in the order: SW > NC > NW > SE > TP > NE, and SW > NC > SE > NW > TP > NE, respectively (Fig. 3a).

Annual mean NO\textsubscript{2} concentrations showed similar spatial variations (0.4 to 16.2 µg N m-3) to those of NH\textsubscript{3}, and overall averaged 6.8 µg N m-3. In the six regions, the NO\textsubscript{2} concentrations at urban sites were 1.4–4.5 times higher than those at rural sites, and were even 2.0–16.6 times higher than the background sites (except for SW). By comparison among regions, annual mean NO\textsubscript{2} concentrations at rural sites in NC were about 2.6 times higher than in NE and NW, and overall averaged NO\textsubscript{2} concentrations in northern rural China (NC, NE, and NW; 5.7 ± 3.5 µg N m-3) were comparable to those at southern rural sites (average of SE and SW; 5.1 ± 0.1 µg N m-3). As for urban and background sites, the annual mean NO\textsubscript{2} concentrations followed the order: NC > NW > SE > SW > NE > TP, and SW > NC > SE > NE > NW > TP, respectively (Fig. 3b).

Annual mean HNO\textsubscript{3} concentrations were relatively low everywhere (from 0.1 to 2.9 µg N m-3; average 1.3 µg N m-3). In all regions except NE and TP, the HNO\textsubscript{3} concentrations were highest at the urban sites (1.7–2.4 µg N m-3), followed by the rural sites (0.8–1.6 µg N m-3), and were lowest at the background sites (0.2–1.1 µg N m-3). The HNO\textsubscript{3} concentrations were comparable for the same land use types across northern and southern monitoring sites, on average, 1.8 vs. 1.8, 1.2 vs. 1.0, and 0.6 vs. 0.8 µg N m-3 at the urban, rural, and background sites, respectively (Fig. 3c). The annual mean concentrations of pNH\textsubscript{4}+ and pNO\textsubscript{3}− were in the ranges of 0.2–18.0 µg N m-3 (average 5.7 µg N m-3) and 0.2–7.7 µg N m-3 (average 2.7 µg N m-3), respectively. Annual pNH\textsubscript{4}+ concentrations show a decreasing trend of urban > rural > background in all regions (except NE), where relatively higher concentrations were observed at the rural sites than the urban sites, and in SE, where no clear differences were observed among three land use types (Fig. 3d). In contrast, annual pNO\textsubscript{3}− concentrations showed a declining trend of urban > rural > background in all regions (Fig. 3e). Overall, annual mean concentrations of both pNH\textsubscript{4}+ and pNO\textsubscript{3}− at all land use types were both slightly higher in northern China (NC, NE and NW) than in southern China (SE, SW, and TP).

In total, annual mean concentrations of gaseous and particulate N\textsubscript{r} in air were 1.3–47.0 µg N m-3 among all sampling sites. The total annual concentrations of measured N\textsubscript{r} generally decreased on the order of urban > rural > background in all regions except NE (Fig. 3f).

3.2 Concentrations of N\textsubscript{r} species in precipitation

The monthly VWM concentrations of inorganic N\textsubscript{r} species at the 43 sampling sites during the study period ranged from 0.01 to 27.1 mg N L-1 for NH\textsubscript{4}+N and from 0.02 to 27.9 mg N L-1 for NO\textsubscript{3}−N (Fig. S3, Supplement). The an-
Annual VWM concentrations of NH$_4^+$-N and NO$_3^-$-N across all sites were in the ranges of 0.2–4.3 and 0.1–2.5 mg N L$^{-1}$, respectively, with averages of 1.6 and 1.3 mg N L$^{-1}$ (Fig. 2b). The urban–rural background distributions of annual VWM concentrations of NH$_4^+$-N and NO$_3^-$-N were, respectively, fairly coincided with corresponding reduced (i.e., NH$_3$ and pNH$_4^+$) and oxidized N$_r$ (i.e., HNO$_3$ and pNO$_3^-$) in all regions except NH$_4^+$-N in SE and NO$_3^-$-N in NW (Fig. 3g and h). Conversely, the regional variations in annual VWM concentrations of NH$_4^+$-N and NO$_3^-$-N for the three land use types were not consistent with corresponding reduced and oxidized N$_r$, respectively. On a national basis, the VWM concentrations of NH$_4^+$-N and NO$_3^-$-N both decreased in the order urban > rural > background (Fig. 4b). The annual total inorganic N (TIN) concentrations in precipitation across all sites were 0.4–6.0 mg N L$^{-1}$, decreasing from urban to background sites in all regions (except NE) as well as on a national basis (Figs. 3i and 4b).

3.3 Dry deposition of N$_r$ species

The dry deposition fluxes of NH$_3$, NO$_2$, HNO$_3$, pNH$_4^+$, and pNO$_3^-$ were in the ranges of 0.5–16.0, 0.2–9.8, 0.2–16.6, 0.1–11.7, and 0.1–4.5 kg N ha$^{-1}$ yr$^{-1}$, and averaged 8.2, 3.2, 5.4, 3.2, and 1.5 kg N ha$^{-1}$ yr$^{-1}$, respectively (Fig. 5a). The total dry N deposition across all sites ranged from 1.1 to 52.2 kg N ha$^{-1}$ yr$^{-1}$ (average 20.6 ± 11.2 kg N ha$^{-1}$ yr$^{-1}$). Gaseous N species were the primary contributors to total dry-deposited N, ranging from 60 to 96%, despite the missing HNO$_3$ data at a few sites. In general, NH$_3$ was the predominant N$_r$ species in total dry N deposition and accounted for 24–72%, compared with 1–43% from NO$_2$ and 9–37% from HNO$_3$. Comparing land use types in each region, the spatial pattern of individual fluxes is fairly consistent with that of their respective concentrations except that of NH$_3$ for NC, that of NO$_2$ for SW, those of NO$_2$ and pNH$_4^+$ for NW, and those of almost all measured N$_r$ species for NE (Figs. 3a–e and 6a–e). Furthermore, a consistent picture is also seen for the total flux (sum of fluxes of five N$_r$ species) at each land use type (Figs. 5f and 6f). Among the six regions, regional variations of individual fluxes at each land use type generally differed from those of their respective concentrations. Similarly, the inconsistent behavior appeared for the total fluxes at urban and rural sites but not at background sites. On a national basis, there was no significant difference ($p > 0.05$) in the total dry N deposition fluxes between urban (26.9 kg N ha$^{-1}$ yr$^{-1}$) and rural (23.0 kg N ha$^{-1}$ yr$^{-1}$) sites, both of which were significantly higher than background site (10.1 kg N ha$^{-1}$ yr$^{-1}$). Also, a similar pattern was found for the dry deposition flux of each N$_r$ species among different land use types (Fig. 4c).

3.4 Wet/bulk deposition of N$_r$ species

Wet/bulk N deposition fluxes at the 43 sites ranged from 1.0 to 19.1 kg N ha$^{-1}$ yr$^{-1}$ for NH$_4^+$-N and from 0.5 to
The present study shows that monthly \(N_r \) by anthropogenic \(N_r \) China is facing serious atmospheric \(N_r \) vs. 39 % in NW, 42 % vs. 58 % in SE, 55 % vs. 45 % in wet/bulk \(N \) deposition to the total deposition were different sites. On a regional basis, the relative importance of dry vs. averaging 1.3) and background (from 1.0 to 2.5; averaging 1.6) \(p \) > significantly different (all \(\text{yr}^{-1} \)) for \(\text{NO}_3^- - N \) (Fig. 5b). The annual wet/bulk \(N \) deposition followed the order of NC > SE > SW > NE > NW > TP for \(\text{NH}_4^+ - N \), and SE > NC > SW > NE > TP > NW for \(\text{NO}_3^- - N \), both of which differed from their orders of annual VWM concentration, reflecting differences in annual precipitation amount. Annual total wet/bulk \(N \) deposition fluxes averaged 24.6, 13.6, 7.4, 24.4, 17.6, and 7.6 \(\text{kg} \text{ N ha}^{-1} \text{yr}^{-1} \), respectively, in NC, NE, NW, SE, SW, and TP (Fig. 5b). At the national scale, annual wet/bulk deposition fluxes of total inorganic \(N \) and/or each \(N_r \) species at urban and rural sites were comparable but significantly higher (\(p < 0.05 \)) than those at background sites (Fig. 4d).

3.5 Total annual dry and wet/bulk deposition of \(N_r \) species

The total (dry plus wet/bulk) \(N \) deposition at the 43 sites ranged from 2.9 to 83.3 \(\text{kg} \text{ N ha}^{-1} \text{yr}^{-1} \) (average 39.9 \(\text{kg} \text{ N ha}^{-1} \text{yr}^{-1} \)) for the period, with 23–83 % dry-deposited (Fig. 5c). Separated by land use types or regions, total annual mean \(N \) deposition fluxes were 49.7, 44.3 and 26.0 \(\text{kg} \text{ N ha}^{-1} \text{yr}^{-1} \) at the urban, rural and background sites, or 56.2, 41.7, 37.8, 27.6, 18.8, and 15.2 \(\text{kg} \text{ N ha}^{-1} \text{yr}^{-1} \) in NC, SE, SW, NE, NW, and TP, respectively, reflecting different anthropogenic impacts. In our network, the \(\text{NH}_4^+ \) (i.e., wet/bulk \(\text{NH}_4^+ - N \) deposition plus dry deposition of \(\text{NH}_3 \) and particulate \(\text{NH}_4^+ \)) / \(\text{NO}_x \) (wet/bulk \(\text{NO}_3^- - N \) deposition plus dry deposition of \(\text{NO}_2 \), \(\text{HNO}_3 \), and particulate \(\text{NO}_x \)) ratio at urban sites (from 0.8 to 1.8, averaging 1.2) was not significantly different (\(p > 0.05 \)) from rural (from 0.5 to 2.7; averaging 1.3) and background (from 1.0 to 2.5; averaging 1.6) sites. On a regional basis, the relative importance of dry vs. wet/bulk \(N \) deposition to the total deposition were different in the six regions, 57 % vs. 43 % in NC, 54 % vs. 46 % in NE, 61 % vs. 39 % in NW, 42 % vs. 58 % in SE, 55 % vs. 45 % in SW, and 50 % vs. 50 % in TP (Fig. 7).

4 Discussion

4.1 Concentration of \(N_r \) species in air and precipitation

China is facing serious atmospheric \(N_r \) pollution induced by anthropogenic \(N_r \) emissions (Liu et al., 2011, 2013). The present study shows that monthly \(N_r \) concentrations of species, through comparisons among regions, have a distinct spatial variability with values significantly higher (all \(p < 0.05 \)) in NC and significantly lower (all \(p < 0.05 \)) in TP. Annual mean \(\text{NH}_3 \) and \(\text{NO}_2 \) concentrations at most sampling sites are in good agreement with the emission inventory and satellite observations by Gu et al. (2012), who reported \(\text{NH}_3 \) hotspots in the North China Plain and south-central China such as Jiangsu and Guangdong provinces, while \(\text{NO}_x \) hotspots were mainly in more developed regions such as the Jing–Jin–Ji (Beijing–Tianjin–Hebei), the Yangtze River Delta and the Pearl River Delta. Our results confirm that NC, which consumes large quantities of fertilizers (for food production) and fossil fuel (for energy supply) (Zhang et al., 2010), experiences the most serious \(N_r \) pollution in China; TP is the least polluted region due to much less human activity. When considering different land use types, the average total annual \(N_r \) concentrations ranked urban > rural > background, with significant differences (all \(p < 0.05 \)) among them, despite site-to-site variability within regions. This reflects the dominant role of human activity on atmospheric \(N_r \).

For individual \(N_r \) species, higher mean concentrations were observed at urban sites than at rural and background sites (Fig. 4a). Higher \(\text{NH}_3 \) concentration in urban areas may be associated with \(\text{NH}_3 \) emissions from biological sources, such as human, sewage disposal systems, and refuse containers (Reche et al., 2012). In addition, \(\text{NH}_3 \) can be produced by over-reduction of \(\text{NO} \) in automobile catalytic converters (Behera et al., 2013), increasing ambient \(\text{NH}_3 \) concentrations in urban areas with high traffic densities. Between 2006 and 2013, the number of motor vehicles increased from 2.39 to 5.17 million in Beijing and from 0.46 to 1.72 million in Zhengzhou (CSY, 2007–2014), which is likely to have resulted in elevated \(\text{NH}_3 \) emissions. Higher \(\text{NO}_2 \) concentrations are expected in urban areas due to \(\text{NO}_x \) emissions from the combustion of fossil fuels (Li and Lin, 2000), and also lead to higher \(\text{HNO}_3 \) concentrations in urban areas via \(\text{NO}_2 \) oxidation.

The higher \(p\text{NH}_4^+ \) and \(p\text{NO}_3^- \) observations at urban sites mainly resulted from the high concentrations at the northern urban sites (NC1, NC2, NC3, NW1, and NW2) (Figs. 2a and S2d, e in the Supplement). This is probably due to the fact that cities in northern China, such as Beijing and Zhengzhou in NC and Urumqi in NW, are being surrounded by intensive agricultural production. Rapid developments along with urbanization in suburban areas shorten the transport distance between \(\text{NH}_3 \) emitted from agriculture and \(\text{SO}_2 \) and \(\text{NO}_x \) emitted from fossil fuel combustion (Gu et al., 2014). This allows the pollutants to react more readily and form aerosols (e.g., \(\text{PM}_{2.5} \)), leading to high concentrations of \(p\text{NH}_4^+ \) and \(p\text{NO}_3^- \) near or within cities. This explanation is supported by the recent MEPC (2014) report that the annual average \(\text{PM}_{2.5} \) concentrations in the cities of Beijing, Zhengzhou, and Urumqi were more than twice the Chinese annual mean \(\text{PM}_{2.5} \) standard value of 35 \(\mu \text{g m}^{-3} \), whereas cities such as Guangzhou and Xining with little surrounding agricultural production had lower \(\text{PM}_{2.5} \) concentrations.

In China’s 12th Five Year Plan (2011–2015), nationwide controls on \(\text{NO}_x \) emissions will be implemented along
with controls on SO\textsubscript{2} and primary particle emissions (Wang et al., 2014). In order to better improve the regional air quality for metropolitan areas, our results suggest that strict control measures on both NH\textsubscript{3} and NO\textsubscript{x} would be beneficial in NC, at least in the suburban areas.

Rural sites in this study also had relatively high concentrations of all measured N\textsubscript{r} species in air, altogether ranking in the order of NC > NE > NW > SE > SW (Fig. 3f). The higher concentrations in northern China are mainly due to the combined effect of high NH\textsubscript{3} emissions from N fertilized farmland (F. S. Zhang et al., 2008) and urban air pollution (e.g., NO\textsubscript{2}, HNO\textsubscript{3}, pNH\textsubscript{4}+, and pNO\textsubscript{3}-) transported from population centers to the surrounding rural areas (Luo et al., 2013). The lower air concentrations of N\textsubscript{r} species at background sites can be ascribed to the lack of both substantial agricultural and industrial emissions. Additionally, higher wind speeds occurred at some background areas (e.g., NC12, NC13 and NW4) (Table S1, Supplement), favoring the dispersion of atmospheric pollutants.

We found that regional variations in N\textsubscript{r} concentrations in precipitation were not fully in accordance with ambient N\textsubscript{r} concentrations (see Sect. 3.2) when assessed by land use types. It is commonly accepted that N concentrations in precipitation are affected by the amount of precipitation (Yu et al., 2011). Negative correlations between precipitation amount and monthly volume-weighted concentrations of NH\textsubscript{4}+–N and NO\textsubscript{3}–N were obtained by fitting exponential models in all six regions (Fig. S4, Supplement), indicating a dilution effect of rainwater on inorganic N concentration. The relationships were not significant (\(p > 0.05\)) in NW and TP, which is probably caused by low precipitation amounts at or near the sampling sites (Fig. S5, Supplement). Nevertheless, dilution could explain some of the regional differences in precipitation N concentrations.

4.2 Dry and wet/bulk deposition of N\textsubscript{r} species

A significant (\(p < 0.001\)) positive correlation was observed between annual dry N deposition and total annual concentrations of atmospheric N\textsubscript{r} species across all sites (Fig. S6, Supplement). Therefore, higher concentrations of N\textsubscript{r} species at urban sites led to higher dry deposition rates compared with rural and background sites, mainly attributable to elevated N\textsubscript{r} emissions from urban sources (e.g., non-agricultural NH\textsubscript{3} emissions from landfills, wastewater treatments and NO\textsubscript{x} emissions from traffic vehicles and power plants) and rapid development of intensive agricultural production in suburban areas surrounding cities, regardless of differences in dry deposition velocities of various N\textsubscript{r} species in different land use types. At the national scale, dry N deposition rates contributed almost half (23–83 %, averaging 52 %) of the total inorganic N deposition, indicating the importance of dry deposition monitoring for comprehensive N deposition quantification.

In this study, regional variations of annual wet/bulk N deposition fluxes of NH\textsubscript{4}+–N, NO\textsubscript{3}–N and their sum showed different spatial patterns to those of corresponding annual VWM concentrations of them in precipitation (see Sect. 3.4). These findings, together with no significant differences (\(p > 0.05\)) in total annual wet/bulk N deposition between NC and SE, reflect, not surprisingly, that regional wet/bulk deposition fluxes of (a) NH\textsubscript{3}; (b) NO\textsubscript{2}; (c) HNO\textsubscript{3}; (d) pNH\textsubscript{4}+; (e) pNO\textsubscript{3}-; and (f) total N\textsubscript{r}; sum of all measured N\textsubscript{r} in dry and wet/bulk N deposition fluxes of NH\textsubscript{4}+ (g); NO\textsubscript{3} (h) and total inorganic N (TIN): sum of NH\textsubscript{4}+ and NO\textsubscript{3} (i) at different land use types in the six regions. The number of sites with the same land use type in each region can be found in Table S1 in the Supplement. Error bars are standard errors of means.

Figure 6. Dry N deposition fluxes of (a) NH\textsubscript{3}; (b) NO\textsubscript{2}; (c) HNO\textsubscript{3}; (d) pNH\textsubscript{4}+; (e) pNO\textsubscript{3}-; and (f) total N\textsubscript{r}; sum of all measured N\textsubscript{r} in dry and wet/bulk N deposition fluxes of NH\textsubscript{4}+ (g); NO\textsubscript{3} (h) and total inorganic N (TIN): sum of NH\textsubscript{4}+ and NO\textsubscript{3} (i) at different land use types in the six regions. The number of sites with the same land use type in each region can be found in Table S1 in the Supplement. Error bars are standard errors of means.
N deposition is dependent not only on N\textsubscript{f} concentrations in precipitation but also on annual rainfall amounts. As shown in Fig. 8, annual wet/bulk deposition fluxes of \(\text{NH}_4^+\text{–N}\) and \(\text{NO}_3^-\text{–N}\) both showed significantly positive correlations with the corresponding annual VWM concentrations of inorganic N and annual precipitation amount, especially for \(\text{NH}_4^+\text{–N}\), that more significant was found for precipitation amount than concentration. The measured wet/bulk N deposition rates (average 19.3 kg N ha\(^{-1}\) yr\(^{-1}\)) were almost twice the earlier average wet deposition value of 9.9 kg N ha\(^{-1}\) yr\(^{-1}\) for period of 1990–2003 in China (Li and Tian, 2007). Our results show similar regional patterns and comparable magnitudes to those measured in the 2000s in China as reported by Jia et al. (2014) (~14 kg N ha\(^{-1}\) yr\(^{-1}\), wet deposition) and Liu et al. (2013) (~21 kg N ha\(^{-1}\) yr\(^{-1}\), bulk deposition).

The \(\text{NH}_4^+\text{–N} / \text{NO}_3^-\text{–N}\) ratio in wet/bulk deposition can be used to indicate the relative contribution of \(\text{N}_x\) from agricultural and industrial activities to N deposition (Pan et al., 2012; Zhan et al., 2015; Zhu et al., 2015) because the major anthropogenic source of \(\text{NH}_4^+\text{–N}\) in precipitation is \(\text{NH}_3\) volatilized from animal excrement and the application of nitrogenous fertilizers in agriculture, while anthropogenic sources of \(\text{NO}_3^-\text{–N}\) in precipitation originate from \(\text{NO}_x\) emitted from fossil fuel combustion in transportation, power plant, and factories (Cui et al., 2014). In this study the overall annual average ratio of \(\text{NH}_4^+\text{–N} / \text{NO}_3^-\text{–N}\) in wet/bulk deposition was 1.3 ± 0.5 (standard deviation), with an increasing (but not significant) trend for urban (1.2 ± 0.6), rural (1.3 ± 0.4), and background (1.5 ± 0.4) sites (Fig. 5b). Our measured ratio was slightly lower than the average values of 1.6 in Europe (Holland et al., 2005) and 1.5 in the United States (Du et al., 2014), and similar to an average value (1.2) reported elsewhere for 2013 in China (Zhu et al., 2015). Based on these findings, we conclude that \(\text{NH}_4^+\text{–N}\) from agricultural sources still dominates wet/bulk N deposition but the contribution has decreased drastically between the 1980s and the 2000s (Liu et al., 2013). Reduced N also contributed more than oxidized N to the total N deposition, and the ratio of reduced to oxidized N deposition overall averaged 1.6 ± 0.7 in dry deposition and 1.4 ± 0.4 in the total deposition (Fig. 5a, c).

The overall mean annual deposition fluxes (wet/bulk plus dry) of \(\text{NH}_3\) and \(\text{NO}_x\) for the period 2010–2014 was graded into five levels and plotted on maps showing the spatial distribution of \(\text{NH}_3\) and \(\text{NO}_x\) emissions (Fig. 9a, b). The anthropogenic emission data of \(\text{NH}_3\) and \(\text{NO}_x\) for the year 2010

![Figure 7. Contribution of different pathways (dry-deposited N = gaseous N + particulate N, wet/bulk-deposited N = precipitation N) to the estimated total N deposition in the six regions: (a) NC: north China; (b) NE: northeast China; (c) NW: northwest China; (d) SE: southeast China; (e) SW: southwest China; (f) TP: Tibetan Plateau.](image)

![Figure 8. Correlations between annual wet/bulk \(\text{NH}_4^+\text{–N}\) deposition and annual volume-weighted concentration of \(\text{NH}_4^+\text{–N}\) (a) and annual precipitation (b); between annual wet/bulk \(\text{NO}_3^-\text{–N}\) deposition and annual volume-weighted concentration of \(\text{NO}_3^-\text{–N}\) (c) and annual precipitation (d).](image)
The spatial pattern of anthropogenic N deposition fluxes to the six regions are strongly dependent on different pollution climate sites in other regions are lack of data. For NC, the overall average total N deposition was 0.51% NH3 and NOx emissions, respectively, even though the emission data were estimated at the province scale. With emission data, N deposition can be used to distinguish regional differences in reactive N pollution. Across six regions, significantly positive correlations were found between NH3 emissions and NOx deposition fluxes ($R^2 = 0.888, p < 0.01$) (Fig. 9c), and between NOx emissions and NO3 deposition fluxes ($R^2 = 0.805, p < 0.05$) (Fig. 9d), implying that the N deposition fluxes to the six regions are strongly dependent on the spatial pattern of anthropogenic N emissions within the regions. The slopes of the relationships of NH3 vs. NH3, and NOx vs. NOx were 0.51 and 0.48, which could be roughly interpreted that NH3 and NOx deposition fluxes represent about 51% NH3 and 48% NOx emissions, respectively.

For all Chinese regions except NC, we cannot compare our data with other studies because observations for different pollution climate sites in other regions are lacking. For NC, the overall average total N deposition was $56.2 \pm 14.8 \text{ g N m}^{-2} \text{ yr}^{-1}$, 13–32% lower than the previously estimated values in northern China (Pan et al., 2012; Luo et al., 2013). This difference may reflect differences in the numbers of sampling sites, land use type, and assumed dry deposition velocities. As expected, our estimated deposition was substantially higher than the results of Liu and Tian (2007), who suggested that the total N deposition ranged from 13 to 20 kg N ha$^{-1}$ yr$^{-1}$ in NC. This is attributed to their omission of many major species (e.g., gaseous NH3, HNO3 and particulate N$_x$) from their data.

Compared to dry and wet N deposition fluxes estimated by CASTNET in the United States, EMEP in Europe, and EANET sites in Japan, the average values of dry and wet/bulk deposition in China are much higher (Table 1). In addition, on the basis of 2001 ensemble-mean modeling results from 21 global chemical transport models (Vet et al., 2014), three global N deposition hotspots were western Europe (with levels from 20.0 to 28.1 kg N ha$^{-1}$ yr$^{-1}$), South Asia (Pakistan, India, and Bangladesh) from 20.0 to 30.6 kg N ha$^{-1}$ yr$^{-1}$ and East Asia from 20 to 38.6 kg N ha$^{-1}$ yr$^{-1}$ in eastern China (the global maximum). Extensive areas of high deposition from 10 to 20 kg N ha$^{-1}$ yr$^{-1}$ appear in the eastern United States and southeastern Canada as well as most of central Europe. Small areas with total deposition of N from 10 to 20 kg N ha$^{-1}$ yr$^{-1}$ are present, and very large areas of the continents have deposition from 2 to 10 kg N ha$^{-1}$ yr$^{-1}$. In contrast, the present study shows a much higher total deposition flux (39.9 kg N ha$^{-1}$ yr$^{-1}$) at a national scale. In China, the consumption rates of chemical fertilizer and fossil fuel have increased 2.0- and 3.2-fold, respectively, between the 1980s and the 2000s (Liu et al., 2013). As a result, the estimated total emission of NH3 reached 9.8 Tg in 2006, con-
Table 1. Comparison of dry, wet (wet/bulk), and total deposition fluxes of N\textsubscript{r} compounds between NNDMN in China and three networks in other countries.

<table>
<thead>
<tr>
<th>Network</th>
<th>Japan EANET networka</th>
<th>CASTNETb</th>
<th>EMEPc</th>
<th>NADMMd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sites or grids</td>
<td>10 sites</td>
<td>130 sites</td>
<td>2447 grids (0.5° × 0.5°)</td>
<td>33 sites</td>
</tr>
<tr>
<td>N deposition (kg N ha-1 yr-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.9</td>
<td>6.6</td>
<td>10.6</td>
<td>9.7</td>
</tr>
<tr>
<td>Median</td>
<td>4.1</td>
<td>5.9</td>
<td>11.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Max</td>
<td>7.0</td>
<td>15.8</td>
<td>18.2</td>
<td>28.0</td>
</tr>
<tr>
<td>Min</td>
<td>1.0</td>
<td>2.1</td>
<td>3.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

a The Japan EANET data are sourced from Endo et al. (2011). Gaseous NO\textsubscript{2} was not included in estimates of dry N deposition. b The CASNET data are available online (http://www.epa.gov/castnet). Gaseous NH\textsubscript{3} was not included in estimates of dry N deposition. c The EMEP data are sourced from Endo et al. (2011), in which the dry and wet deposition amounts at each grid covering 27 EMEP countries were estimated by the unified EMEP models (Simpson et al., 2003). d Only including the rural and background sites in NNDMN.

4.3 Implications of monitoring N\textsubscript{r} concentration and deposition on regional N deposition simulation

Our results show that atmospheric concentrations and deposition of N\textsubscript{r} in China were high in the 2000s, although the government has made considerable efforts to control environmental pollution by improving air quality in mega cities during and after the 2008 Beijing Summer Olympic Games (Wang et al., 2010; Chan and Yao, 2008). Ideally, the spatial distribution of monitoring sites should reflect the gradients in the concentrations and deposition fluxes of atmospheric N\textsubscript{r} species. Given the fact that the arithmetic averages used in this study cannot give a completely accurate evaluation of N\textsubscript{r} levels for the regions of China due to the limited numbers of monitoring sites and land use types, it is important to develop and improve the quantitative methods for determining N deposition across China.

Numerical models are very useful tools to quantify atmospheric N deposition (including both spatial and temporal variations), but a challenge to the modeling approaches is that observations to validate the simulated concentrations and deposition fluxes are often lacking. In our study 43 monitoring sites were selected in a range of land use types to provide more representative regional information on N deposition in China. Although those measurements cannot define all aspects of N deposition across different regions, they add substantially to existing knowledge concerning the spatial patterns and magnitudes of N deposition. The present measurements will be useful for better constraining emission inventories and evaluating simulations from atmospheric chemistry models. In future studies we will use models (e.g., FRAME, Dore et al., 2012) integrated with measurements from our monitoring network to fully address the spatial–temporal variations of atmospheric N deposition and its impacts on natural and semi-natural ecosystems at the regional/national level.

4.4 Uncertainty analysis of the N dry and wet deposition fluxes

The dry deposition fluxes were estimated by combining measured concentrations with modeled V\textsubscript{d}. As summarized in Table S4, our estimates of dry deposition velocities for different N\textsubscript{r} species are generally consistent with previous studies (e.g., Flechard et al., 2011; Pan et al., 2012). Some uncertainties may still exist in the inputs for dry deposition modeling. For example, underlying surface parameters (e.g., surface roughness length and land type) strongly affect dry deposition through their effect on both deposition velocity...
and the absorbability of the ground surface to each of the gaseous and particulate N\textsubscript{r} species (Loubet et al., 2008). In addition, there is uncertainty in the deposition fluxes for both \(p\text{NH}_3 \) and \(p\text{NO}_3^- \) in our network, resulting from the difference between the cut-off sizes of particles in the samplers and those defined in the modeled \(V_d \), which was calculated for atmospheric PM\textsubscript{2.5} in GEOS-Chem model. For example, the cut-off sizes of the samples can also collect coarse NO\textsubscript{3}- particles (e.g., calcium nitrate) but should have little effect on NH\textsubscript{4}+ particles (mainly in the fine scale < 1 µm) (Tang et al., 2009), resulting in an underestimation of \(p\text{NO}_3^- \) deposition. Furthermore, NH\textsubscript{3} fluxes over vegetated land are bi-directional and the net direction of this flux is often uncertain. A so-called canopy compensation point was used in previous studies (Sutton et al., 1998) to determine the direction of the NH\textsubscript{3} flux. Since the principle of bi-directional NH\textsubscript{3} exchange was not considered in this study, NH\textsubscript{3} deposition may be overestimated at rural sites with relatively high canopy compensation points (e.g., up to 5 µg N m-2 yr-1) due to fertilized croplands or vegetation (Sutton et al., 1993).

On the other hand, the total dry deposition flux in this study may be underestimated due to omission of the dry-deposited organic N species in our network and missing HNO\textsubscript{3} data at very few sites as noted earlier (see Sect. 2.2). Organic N species have been found to make an important contribution to the N dry deposition. For example, PAN accounted for 20 % of the daytime, summertime NO\textsubscript{3} (NO + NO\textsubscript{2} + HNO\textsubscript{3} + NO\textsubscript{3} + PAN) dry deposition at a coniferous forest site (Turnipseed et al., 2006). However, the contribution of PAN and other known atmospheric organic nitrates to total N\textsubscript{r} inputs must be minor on an annual timescale, as reported by Flechard et al. (2012). In previous work, dry deposition flux was inferred from atmospheric N\textsubscript{r} concentrations and a literature-based annual mean deposition velocity (Shen et al., 2009), or reported by Luo et al. (2013), who did not consider the different dry deposition velocities of various N\textsubscript{r} species among different land use types. Clearly, in this study we have greatly improved the estimation of dry deposition, but further work is still required to increase the reliability and accuracy of N dry deposition values.

Since wet/bulk deposition was measured directly, the reported fluxes are considered more accurate than dry deposition fluxes but still some uncertainties exist. On one hand, the estimated fluxes obtained from the open precipitation samplers contain contributions from wet plus unquantifiable dry deposition (including both gases and particles) and therefore likely overestimate actual wet deposition (Cape et al., 2009; Liu et al., 2015). For example, our previous research showed that annual unquantifiable dry deposition (the difference between bulk and wet deposition, approx. 6 kg N ha-1 yr-1 on average) accounted for 20 % of bulk N deposition based on observations at three rural sites on the North China Plain (Y. Zhang et al., 2008). This contribution increased to 39 % in urban areas based on a recent measurement (Zhang et al., 2015). On the other hand, dissolved organic N compounds, which have been observed to contribute around 25–30 % of the total dissolved nitrogen in wet deposition around the world (Jickells et al., 2013) and approximately 28 % of the total atmosphere bulk N deposition in China (Y. Zhang et al., 2012), were not considered in the present study. Their exclusion here would contribute to an underestimation of the total wet N deposition.

Although the NNDMN is the only long-term national deposition network to monitor both N wet/bulk and dry deposition in China till now, large areas of the country and islands do not contain sampling points, which may result in missing hotspots or pristine sites of N deposition. The implementation of an adequate monitoring program is also difficult at present in some regions (e.g., northwest China and the Tibetan Plateau). To address this issue, more new monitoring sites, covering regions with both extremely low and high N\textsubscript{r} emissions, should be set up in the NNDMN in future work.

5 Conclusions

In this paper, we systematically reported large spatial variations in annual mean concentrations (1.3–47.0 µg N m-3), dry (1.1 to 52.2 kg N ha-1 yr-1), wet/bulk (1.5–32.5 kg N ha-1 yr-1) and total (2.9 to 83.3 kg N ha-1 yr-1) deposition fluxes of atmospheric N\textsubscript{r} species across the 43 monitoring sites in China. On a regional/national basis, the annual mean concentrations and deposition fluxes of N\textsubscript{r} species ranked by the same order of urban > rural > background sites and NC > SE > SW > NE > NW > TP, reflecting the impact of varying anthropogenic N\textsubscript{r} emissions in different land use types and/or regions.

Dry deposition fluxes of N\textsubscript{r} species on average contributed 52 % of the total N deposition (39.9 kg N ha-1 yr-1) across all sites, indicating the importance of dry deposition monitoring for a complete N deposition assessment at the national scale. Annual average ratios of reduced N / oxidized N in dry, wet/bulk and total deposition were 1.6, 1.3, and 1.4, respectively, suggesting that reduced N, mainly from agricultural sources, still dominates dry, wet/bulk, and total N deposition in China.

Our work represents the first effort to investigate both dry and wet/bulk N deposition simultaneously, based on a nationwide monitoring network in China. We consider this unique data set important for not only informing policymakers about the abatement of pollutant emissions and ecosystem protection but also validating model estimations of N deposition at the regional/national scale. For better understanding atmospheric N deposition fluxes in China, further studies in the future are still required at least the two following aspects: (1) to cover more representative monitoring sites, and (2) to improve the dry deposition velocity estimates of vari-
ous N\textsubscript{2} species using a single-point dry deposition model as for CASTNET.

The Supplement related to this article is available online at doi:10.5194/acp-15-12345-2015-supplement.

Acknowledgements. This study was supported by the Chinese National Basic Research Program (2014CB954202), the China Funds for Distinguished Young Scholars of NSFC (40425007), and the National Natural Science Foundation of China (31121062, 41321064 and 41405144). The authors thank all technicians at monitoring sites in NNDMN, and W. Aas and two anonymous reviewers for their constructive suggestions on the manuscript.

Edited by: L. Zhang

References

W. Xu et al.: Quantifying nitrogen deposition in China

Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy, D. V., Poulton, P. R., and Willison, T. W.:

