Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 20
Atmos. Chem. Phys., 15, 12065–12078, 2015
https://doi.org/10.5194/acp-15-12065-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Study of ozone, aerosols and radiation over the Tibetan Plateau...

Atmos. Chem. Phys., 15, 12065–12078, 2015
https://doi.org/10.5194/acp-15-12065-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Oct 2015

Research article | 30 Oct 2015

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

C. Xu1,2,3,a, Y. M. Ma1,2,3,a, C. You1,2, and Z. K. Zhu1,2,3 C. Xu et al.
  • 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Qomolangma Station for Atmospheric Environmental Observation and Research, Chinese Academy of Sciences, Dingri 858200, Tibet, China
  • anow at: Institute of Tibetan Plateau Research, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Abstract. The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by the Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP throughout the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is maybe partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental aerosol and smoke are also investigated, based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6–8 km above sea level, especially in spring and summer. This demarcation appears around 33–35° N in the middle of the plateau, and it is possibly associated with the high-altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

Publications Copernicus
Download
Short summary
Different monthly variation patterns of aerosol optical depth are observed over the southern and northern Tibetan Plateau (TP). A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6-8km. The different seasonal variation patterns between the northern and southern TP are due to many factors, including the emission sources, high-altitude terrain and atmospheric circulation.
Different monthly variation patterns of aerosol optical depth are observed over the southern and...
Citation