Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 20
Atmos. Chem. Phys., 15, 11789–11805, 2015
https://doi.org/10.5194/acp-15-11789-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 11789–11805, 2015
https://doi.org/10.5194/acp-15-11789-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Oct 2015

Research article | 23 Oct 2015

Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models

S. A. Strode et al.
Related authors  
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019,https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites
Le Kuai, Kevin W. Bowman, Helen Worden, Kazuyuki Miyazaki, Susan Kulawik, Andrew Conley, Jean-François Lamarque, Fabien Paulot, David Paynter, Luke D. Oman, Sarah Strode, Eugene Rozanov, Andrea Stenke, Laura Revell, David A. Plummer, Makoto Deushi, Patrick Jöckel, and Markus Kunze
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-231,https://doi.org/10.5194/acp-2019-231, 2019
Revised manuscript under review for ACP
Short summary
Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019,https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission
Samuel R. Hall, Kirk Ullmann, Michael J. Prather, Clare M. Flynn, Lee T. Murray, Arlene M. Fiore, Gustavo Correa, Sarah A. Strode, Stephen D. Steenrod, Jean-Francois Lamarque, Jonathan Guth, Béatrice Josse, Johannes Flemming, Vincent Huijnen, N. Luke Abraham, and Alex T. Archibald
Atmos. Chem. Phys., 18, 16809–16828, https://doi.org/10.5194/acp-18-16809-2018,https://doi.org/10.5194/acp-18-16809-2018, 2018
Short summary
Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling
Sarah A. Strode, Junhua Liu, Leslie Lait, Róisín Commane, Bruce Daube, Steven Wofsy, Austin Conaty, Paul Newman, and Michael Prather
Atmos. Chem. Phys., 18, 10955–10971, https://doi.org/10.5194/acp-18-10955-2018,https://doi.org/10.5194/acp-18-10955-2018, 2018
Short summary
Related subject area  
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019,https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China
Jia Xing, Dian Ding, Shuxiao Wang, Zhaoxin Dong, James T. Kelly, Carey Jang, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 19, 13627–13646, https://doi.org/10.5194/acp-19-13627-2019,https://doi.org/10.5194/acp-19-13627-2019, 2019
Short summary
Effects of strengthening the Baltic Sea ECA regulations
Jan Eiof Jonson, Michael Gauss, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 13469–13487, https://doi.org/10.5194/acp-19-13469-2019,https://doi.org/10.5194/acp-19-13469-2019, 2019
Short summary
The mechanisms and meteorological drivers of the summertime ozone–temperature relationship
William C. Porter and Colette L. Heald
Atmos. Chem. Phys., 19, 13367–13381, https://doi.org/10.5194/acp-19-13367-2019,https://doi.org/10.5194/acp-19-13367-2019, 2019
Short summary
Prior biosphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals
Sajeev Philip, Matthew S. Johnson, Christopher Potter, Vanessa Genovesse, David F. Baker, Katherine D. Haynes, Daven K. Henze, Junjie Liu, and Benjamin Poulter
Atmos. Chem. Phys., 19, 13267–13287, https://doi.org/10.5194/acp-19-13267-2019,https://doi.org/10.5194/acp-19-13267-2019, 2019
Short summary
Cited articles  
Arellano, A. F. and Hess, P. G.: Sensitivity of top-down estimates of CO sources to GCTM transport, Geophys. Res. Lett., 33, L21807, https://doi.org/10.1029/2006gl027371, 2006.
Berntsen, T. K., Fuglestvedt, J. S., Joshi, M. M., Shine, K. P., Stuber, N., Ponater, M., Sausen, R., Hauglustaine, D. A., and Li, L.: Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials, Tellus B, 57, 283–304, https://doi.org/10.1111/j.1600-0889.2005.00152.x, 2005.
Bian, H. S., Chin, M. A., Kawa, S. R., Yu, H. B., Diehl, T., and Kucsera, T.: Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res.-Atmos., 115, D07302, https://doi.org/10.1029/2009jd012781, 2010.
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data Assimilation Using Incremental Analysis Updates, Mon. Weather Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996.
Publications Copernicus
Download
Short summary
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry climate models. We find that increasing Northern Hemisphere (NH) CO emissions or reducing NH OH concentrations improves the agreement with CO surface observations, but reducing NH OH leads to a better comparison with MOPITT. Removing model biases in ozone and water vapor increases the simulated methane lifetime, but it does not give the 20% reduction in NH OH suggested by our analysis of the CO bias.
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry...
Citation