Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 20
Atmos. Chem. Phys., 15, 11789–11805, 2015
https://doi.org/10.5194/acp-15-11789-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 11789–11805, 2015
https://doi.org/10.5194/acp-15-11789-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Oct 2015

Research article | 23 Oct 2015

Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models

S. A. Strode1,2, B. N. Duncan2, E. A. Yegorova2,3,a, J. Kouatchou2,4, J. R. Ziemke2,5, and A. R. Douglass2 S. A. Strode et al.
  • 1GESTAR, Universities Space Research Association, Columbia, MD, USA
  • 2NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 3Earth System Science Interdisciplinary Center, College Park, MD, USA
  • 4Science Systems and Applications Inc., Lanham, MD, USA
  • 5GESTAR, Morgan State University, Baltimore, MD, USA
  • anow at: Nuclear Regulatory Commission, Rockville, MD, USA

Abstract. A low bias in carbon monoxide (CO) at northern high and mid-latitudes is a common feature of chemistry climate models (CCMs) that may indicate or contribute to a high bias in simulated OH and corresponding low bias in methane lifetime. We use simulations with CO tagged by source type to investigate the sensitivity of the CO bias to CO emissions, transport, global mean OH, and the hemispheric asymmetry of OH. We also investigate how each of these possible contributors to the CO bias affects the methane lifetime. We find that the use of specified meteorology alters the distribution of CO compared to a free-running CCM simulation, improving the comparison with surface observations in summer. Our results also show that reducing the hemispheric asymmetry of OH improves the agreement of simulated CO with observations. We use simulations with parameterized OH to quantify the impact of known model biases on simulated OH. Removing biases in ozone and water vapor as well as reducing Northern Hemisphere NOx does not remove the hemispheric asymmetry in OH, but it reduces global mean OH by 18 %, bringing the simulated methane lifetime into agreement with observation-based estimates.

Publications Copernicus
Download
Short summary
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry climate models. We find that increasing Northern Hemisphere (NH) CO emissions or reducing NH OH concentrations improves the agreement with CO surface observations, but reducing NH OH leads to a better comparison with MOPITT. Removing model biases in ozone and water vapor increases the simulated methane lifetime, but it does not give the 20% reduction in NH OH suggested by our analysis of the CO bias.
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry...
Citation