Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 20
Atmos. Chem. Phys., 15, 11683–11700, 2015
https://doi.org/10.5194/acp-15-11683-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 11683–11700, 2015
https://doi.org/10.5194/acp-15-11683-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Oct 2015

Research article | 21 Oct 2015

Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau

Y. W. Liu1,3, Xu-Ri1,2, Y. S. Wang4, Y. P. Pan4, and S. L. Piao1,2,3 Y. W. Liu et al.
  • 1Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
  • 2CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • 3Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • 4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract. Since the mid-20th century, nitrogen (N) deposition has shown an increasing trend in the Tibetan Plateau (TP), where alpine ecosystems are sensitive to elevated N deposition. However, the quantitative characterization of N deposition in the TP remains unclear, due in most part to the lack of in situ measurement. Using the Tibetan Observation and Research Platform network, we conducted short-term in situ measurements of major ions (NO3, Cl, SO42−, NH4+, Na+, K+, Ca2+, and Mg2+) wet deposition at five remote sites in the TP during 2011–2013. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, Ngari Station, and Muztagh Ata Station, the NH4+–N wet deposition was 0.63, 0.68, 0.92, 0.36, and 1.25 kg N ha−1 yr−1, respectively; the NO3–N wet deposition was 0.28, 0.24, 0.03, 0.08, and 0.30 kg N ha−1 yr−1, respectively; and the inorganic N wet deposition was 0.91, 0.92, 0.94, 0.44, and 1.55 kg N ha−1 yr−1, respectively. The inorganic N wet deposition mainly occurred in the form of NH4+–N during summer at all sites. Results of enrichment factor analysis and principal component analysis demonstrated that both NH4+–N and NO3–N wet deposition in the TP were mainly influenced by anthropogenic activities. Backward trajectory analysis showed that the inorganic N deposition at Muztagh Ata Station was mainly transported from central Asia and the Middle East through westerlies. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, and Ngari Station, the inorganic N deposition was mainly contributed by anthropogenic sources in south Asia, and was mainly transported by the Indian monsoon. Combining site-scale in situ measurements of inorganic N wet deposition in this and previous studies, the average wet deposition of atmospheric NH4+–N, NO3–N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. The average NH4+–N : NO3–N ratio in precipitation in the TP was approximately 2 : 1. Results from the present study suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP. To clarify the total N deposition in the TP more clearly, it is essential to conduct long-term monitoring of both wet and dry deposition of atmospheric N in various climate zones in the TP in the future.

Publications Copernicus
Download
Short summary
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining in situ measurements in this and previous studies, the average wet deposition of NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. Results suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP.
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining...
Citation