Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 19
Atmos. Chem. Phys., 15, 11355-11371, 2015
https://doi.org/10.5194/acp-15-11355-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Pan European Gas-Aerosols Climate Interaction Study...

Atmos. Chem. Phys., 15, 11355-11371, 2015
https://doi.org/10.5194/acp-15-11355-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Oct 2015

Research article | 13 Oct 2015

Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

E. Kostenidou1,2, K. Florou1,2, C. Kaltsonoudis1,2, M. Tsiflikiotou1,2, S. Vratolis3, K. Eleftheriadis3, and S. N. Pandis1,2,4 E. Kostenidou et al.
  • 1Institute of Chemical Engineering Sciences, ICE-HT, Patras, Greece
  • 2Department of Chemical Engineering, University of Patras, Patras, Greece
  • 3ERL Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCRS Demokritos, Attiki, Greece
  • 4Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA

Abstract. The concentration and chemical composition of non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9–14 μg m−3. The contribution of sulfate was around 38 %, while organic aerosol (OA) contributed approximately 45 % in both cases. PM1 nitrate levels were low (2 %). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases PM1 was acidic.

Positive matrix factorization (PMF) was applied to the high-resolution organic aerosol mass spectra obtained by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). For Patras, five OA sources could be identified: 19 % very oxygenated OA (V-OOA), 38 % moderately oxygenated OA (M-OOA), 21 % biogenic oxygenated OA (b-OOA), 7 % hydrocarbon-like OA (HOA-1) associated with traffic sources and 15 % hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens, the corresponding source contributions were: V-OOA (35 %), M-OOA (30 %), HOA-1 (18 %) and HOA-2 (17 %). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22 % in Patras and 35 % in Athens) but not dominant.

Publications Copernicus
Special issue
Download
Short summary
The concentration and chemical composition of fine particulate matter were measured during the summer of 2012 in two Greek cities, Patras and Athens. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources. Analysis of the Aerosol Mass Spectrometer data suggested that the contribution of the primary sources to organic aerosol was important (22% in Patras and 35% in Athens) but not dominant.
The concentration and chemical composition of fine particulate matter were measured during the...
Citation
Share