Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 15, 11147-11164, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
07 Oct 2015
The CarboCount CH sites: characterization of a dense greenhouse gas observation network
B. Oney1,2, S. Henne1, N. Gruber2,3, M. Leuenberger4, I. Bamberger5,a, W. Eugster5, and D. Brunner1,2 1Empa, Lab. for Air Pollution/Environmental Technology, Dübendorf, Switzerland
2ETH Zurich, Center for Climate Systems Modeling, Zurich, Switzerland
3ETH Zurich, Inst. of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
4Univ. of Bern, Physics Inst., Climate and Environmental Division, and Oeschger Centre for Climate Change Research, Bern, Switzerland
5ETH Zurich, Inst. of Agricultural Sciences, Zurich, Switzerland
anow at: Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany
Abstract. We describe a new rural network of four densely placed (< 100 km apart), continuous atmospheric carbon (CO2, CH4, and CO) measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km) carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling).

The Beromünster measurements are made on a tall tower (212 m) located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background) vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (< 50 km) pasture and forest fluxes exert the most simulated surface influence, except during convective summertime days when the site is mainly influenced by the eastern Swiss Plateau, which results in summertime regional CO2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites). The Gimmiz site measurements are made on a small tower (32 m) in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2) stem from large, nearby (< 50 km) crop and anthropogenic fluxes of the Seeland region, except during warm or windy days when simulated surface influence is of regional scale (< 250 km). The Lägern-Hochwacht measurements are made on a small tower (32 m) on top of the steep Lägern crest, where simulated surface influence is typically of regional scale (130–300 km) causing summertime regional signals to vary from −5 to +8 ppmv CO2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site.

We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km) atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be necessary to determine the impact of these limitations on our ability to derive reliable regional-scale carbon flux estimates in the complex Swiss landscape.

Please read the corrigendum first before accessing the article.

Citation: Oney, B., Henne, S., Gruber, N., Leuenberger, M., Bamberger, I., Eugster, W., and Brunner, D.: The CarboCount CH sites: characterization of a dense greenhouse gas observation network, Atmos. Chem. Phys., 15, 11147-11164,, 2015.
Publications Copernicus
Short summary
We present a detailed analysis of a new greenhouse gas measurement network in the Swiss Plateau, situated between the Jura mountains and the Alps. We find the network's measurements to be information rich and suitable for studying surface carbon fluxes of the study region. However, we are limited by the high-resolution (2km) atmospheric transport model's ability to simulate meteorology at the individual measurement stations, especially at those situated in rough terrain.
We present a detailed analysis of a new greenhouse gas measurement network in the Swiss...