Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 19
Atmos. Chem. Phys., 15, 10925–10938, 2015
https://doi.org/10.5194/acp-15-10925-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 10925–10938, 2015
https://doi.org/10.5194/acp-15-10925-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Oct 2015

Research article | 01 Oct 2015

Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012

L. Shen1, L. J. Mickley1, and A. P. K. Tai2 L. Shen et al.
  • 1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
  • 2Earth System Science Programme and Graduate Division of Earth and Atmospheric Sciences, The Chinese University of Hong Kong, Hong Kong, China

Abstract. We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between −0.76 and −0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg−1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg−1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.

Publications Copernicus
Download
Short summary
In this study, we have examined the effect of polar jet and Bermuda High on ozone air quality in the eastern United States. In the Midwest and northeast, the poleward shift of jet wind leads to reduced polar jet frequency, resulting in increased ozone there. In the southeast, the influence of Bermuda High on ozone variability depends on the location of its west edge. Westward movement increases the ozone only when the JJA Bermuda High west edge is located west of 85.4°W.
In this study, we have examined the effect of polar jet and Bermuda High on ozone air quality in...
Citation