Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 2
Atmos. Chem. Phys., 15, 1087–1104, 2015
https://doi.org/10.5194/acp-15-1087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 1087–1104, 2015
https://doi.org/10.5194/acp-15-1087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jan 2015

Research article | 30 Jan 2015

A regional carbon data assimilation system and its preliminary evaluation in East Asia

Z. Peng1, M. Zhang2, X. Kou2,3, X. Tian4, and X. Ma4 Z. Peng et al.
  • 1School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China
  • 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 3Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract. In order to optimize surface CO2 fluxes at grid scales, a regional surface CO2 flux inversion system (Carbon Flux Inversion system and Community Multi-scale Air Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter (EnKF) to constrain the CO2 concentrations and applying the ensemble Kalman smoother (EnKS) to optimize the surface CO2 fluxes. The smoothing operator is associated with the atmospheric transport model to constitute a persistence dynamical model to forecast the surface CO2 flux scaling factors. In this implementation, the "signal-to-noise" problem can be avoided; plus, any useful observed information achieved by the current assimilation cycle can be transferred into the next assimilation cycle. Thus, the surface CO2 fluxes can be optimized as a whole at the grid scale in CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a set of Observing System Simulation Experiments (OSSEs) by assimilating CO2 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed that the CO2 concentration assimilation using EnKF could constrain the CO2 concentration effectively, illustrating that the simultaneous assimilation of CO2 concentrations can provide convincing CO2 initial analysis fields for CO2 flux inversion. In addition, the CO2 flux optimization using EnKS demonstrated that CFI-CMAQ could, in general, reproduce true fluxes at grid scales with acceptable bias. Two further sets of numerical experiments were conducted to investigate the sensitivities of the inflation factor of scaling factors and the smoother window. The results showed that the ability of CFI-CMAQ to optimize CO2 fluxes greatly relied on the choice of the inflation factor. However, the smoother window had a slight influence on the optimized results. CFI-CMAQ performed very well even with a short lag-window (e.g. 3 days).

Publications Copernicus
Download
Short summary
We associated the smoothing operator with the atmospheric transport model to constitute the persistence dynamical model to forecast the surface CO2 flux scaling factors for the purpose of resolving the "signal-to-noise" problem, as well as transporting the useful observed information onto the next assimilation cycle. Based on this improvement, a regional surface CO2 flux inversion system, CFI-CMAQ, has been developed. The OSSEs showed that the performance of CFI-CMAQ is effective and promising.
We associated the smoothing operator with the atmospheric transport model to constitute the...
Citation