Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 15, 10309-10323, 2015
https://doi.org/10.5194/acp-15-10309-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
18 Sep 2015
Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.)
E. Hammer1,a, N. Bukowiecki1, B. P. Luo3, U. Lohmann3, C. Marcolli3,4, E. Weingartner1,b, U. Baltensperger1, and C. R. Hoyle1,2 1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
2Swiss Federal Institute for Forest Snow and Landscape Research (WSL)-Institute for Snow and Avalanche Research (SLF), Davos, Switzerland
3Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
4Marcolli Chemistry and Physics Consulting GmbH, 8092 Zurich, Switzerland
anow at: Grolimund + partner AG – environmental engineering, 3018 Bern, Switzerland
bnow at: Institute for Aerosol and Sensor Technology, University of Applied Sciences and Arts Northwestern Switzerland, Switzerland
Abstract. Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol–cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011) was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l.) focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of −8 to 5 °C). With a box model the sensitivity of the effective peak supersaturation (SSpeak), an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases) and at higher frequencies, the maximum SSpeak decreases again.

Citation: Hammer, E., Bukowiecki, N., Luo, B. P., Lohmann, U., Marcolli, C., Weingartner, E., Baltensperger, U., and Hoyle, C. R.: Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.), Atmos. Chem. Phys., 15, 10309-10323, https://doi.org/10.5194/acp-15-10309-2015, 2015.
Publications Copernicus
Download
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
An important quantity which determines aerosol activation and cloud formation is the effective...
Share