Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 14, issue 18 | Copyright

Special issue: Haze in China (HaChi 2009–2010)

Atmos. Chem. Phys., 14, 9597-9612, 2014
https://doi.org/10.5194/acp-14-9597-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Sep 2014

Research article | 16 Sep 2014

Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

Q. Mu1,2 and H. Liao1 Q. Mu and H. Liao
  • 1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2Graduate University of Chinese Academy of Sciences, Beijing, China

Abstract. We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004–2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004–2012. Simulated PM2.5 (particles with a diameter of 2.5 μm or less) aerosol concentrations exhibited large IAVs in North China (NC; 32–42° N, 110–120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC; 22–32° N, 110–120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. The concentrations of PM2.5 over the Sichuan Basin (SCB; 27–33° N, 102–110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with APDM values of 8–9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity influenced gas-to-aerosol partitioning, which were the major factors that led to the IAVs of nitrate aerosol in China. The IAVs in wind and precipitation were found to drive the IAVs of organic carbon aerosol. We also compared the IAVs of aerosols simulated with variations in meteorological parameters alone with those simulated with variations in anthropogenic emissions alone; the variations in meteorological fields were found to dominate the IAVs of aerosols in northern and southern China over 2004–2012. Considering that the IAVs in meteorological fields are mainly associated with natural variability in the climate system, the IAVs in aerosol concentrations driven by meteorological parameters have important implications for the effectiveness of short-term air quality control strategies in China.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share