Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 14, issue 18
Atmos. Chem. Phys., 14, 9583–9596, 2014
https://doi.org/10.5194/acp-14-9583-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 14, 9583–9596, 2014
https://doi.org/10.5194/acp-14-9583-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Sep 2014

Research article | 16 Sep 2014

Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs

P. Chazette, F. Marnas, J. Totems, and X. Shang P. Chazette et al.
  • Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR8212, Laboratoire mixte CEA-CNRS-UVSQ, CEA Saclay, 91191 Gif-sur-Yvette, France

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) is a new generation spaceborne passive sensor mainly dedicated to meteorological applications. Operational Level-2 products have been available via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for several years. In particular, vertical profiles of water vapor measurements are retrieved from infrared radiances at the global scale. Nevertheless, the robustness of such products has to be checked because only a few validations have been reported. For this purpose, the field experiments that were held during the HyMeX and ChArMEx international programs are a very good opportunity. A H2O-Raman lidar was deployed on the Balearic island of Menorca and operated continuously for ~ 6 and ~ 3 weeks during fall 2012 (Hydrological cycle in the Mediterranean eXperiment – HyMeX) and summer 2013 (Chemistry–Aerosol Mediterranean Experiment – ChArMEx), respectively. It measured simultaneously the water vapor mixing ratio and aerosol optical properties. This article does not aim to describe the IASI operational H2O inversion algorithm, but to compare the vertical profiles derived from IASI onboard (meteorological operational) MetOp-A and the ground-based lidar measurements to assess the reliability of the IASI operational product for the water vapor retrieval in both the lower and middle troposphere. The links between water vapor contents and both the aerosol vertical profiles and the air mass origins are also studied. About 30 simultaneous observations, performed during nighttime in cloud free conditions, have been considered. For altitudes ranging from 2 to 7 km, root mean square errors (correlation) of ~ 0.5 g kg−1 (~ 0.77) and ~ 1.1 g kg−1 (~ 0.72) are derived between the operational IASI product and the available lidar profiles during HyMeX and ChArMEx, respectively. The values of both root mean square error and correlation are meaningful and show that the operational Level-2 product of the IASI-derived vertical water vapor mixing ratio can be considered for meteorological and climatic applications, at least in the framework of field campaigns.

Publications Copernicus
Download
Citation