Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 14, issue 17
Atmos. Chem. Phys., 14, 9137-9153, 2014
https://doi.org/10.5194/acp-14-9137-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 9137-9153, 2014
https://doi.org/10.5194/acp-14-9137-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2014

Research article | 05 Sep 2014

Ozone vegetation damage effects on gross primary productivity in the United States

X. Yue and N. Unger X. Yue and N. Unger
  • School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA

Abstract. We apply an off-line process-based vegetation model (the Yale Interactive Terrestrial Biosphere model) to assess the impacts of ozone (O3) vegetation damage on gross primary productivity (GPP) in the United States during the past decade (1998–2007). The model's GPP simulation is evaluated at 40 sites of the North American Carbon Program (NACP) synthesis. The ecosystem-scale model version reproduces interannual variability and seasonality of GPP at most sites, especially in croplands. Inclusion of the O3 damage impact decreases biases of simulated GPP at most of the NACP sites. The simulation with the O3 damage effect reproduces 64% of the observed variance in summer GPP and 42% on the annual average. Based on a regional gridded simulation over the US, summertime average O3-free GPP is 6.1 g C m−2 day−1 (9.5 g C m−2 day−1 in the east of 95° W and 3.9 g C m−2 day−1 in the west). O3 damage decreases GPP by 4–8% on average in the eastern US and leads to significant decreases of 11–17% in east coast hot spots. Sensitivity simulations show that a 25% decrease in surface O3 concentration halves the average GPP damage to only 2–4%, suggesting the substantial co-benefits to ecosystem health that may be achieved via O3 air pollution control.

Publications Copernicus
Download
Citation
Share