Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 14, issue 15
Atmos. Chem. Phys., 14, 7941–7951, 2014
https://doi.org/10.5194/acp-14-7941-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 7941–7951, 2014
https://doi.org/10.5194/acp-14-7941-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Aug 2014

Research article | 11 Aug 2014

Production and growth of new particles during two cruise campaigns in the marginal seas of China

X. H. Liu1, Y. J. Zhu1, M. Zheng2, H. W. Gao1, and X. H. Yao1,3 X. H. Liu et al.
  • 1Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
  • 2State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • 3Qingdao Collaborative Center of Marine Science and Technology, Qingdao 266100, China

Abstract. In this paper, we investigated production and growth of new particles in the marine atmosphere during two cruise campaigns in China Seas using a Fast Mobility Particle Sizer. Only eight new particle formation (NPF) events (> 30 min) occurred on 5 days out of 31 sampling days, and the subsequent growth of new particles was observed only in five events. Apparent formation rates of new particles (in the range of 5.6–30 nm) varied from 0.3 to 15.2 particles cm−3 s−1 in eight events, and growth rates ranged from 2.5 to 10 nm h−1 in five NPF events. Modeling results simulated by US EPA Community Multi-scale Air Quality Model (CMAQ) showed that ammonium nitrate (NH4NO3) was newly formed in the atmosphere over the corresponding sea zone during 2 out of 5 events, in which new particles partially or mostly grew over 50 nm. However, in the remaining three events, new particles cannot grow over 30 nm, and the modeling results showed that no NH4NO3 was newly formed in the corresponding marine atmosphere. Modeling results also showed that formation of secondary organics occurred through all new particle growth periods. Difference between the two types of new particle growth patterns suggested that a combination of ammonium nitrate and organics newly formed likely contributed to the growth of new particles from 30 nm to larger size. However, the findings were obtained from the limited data, and the simulations of CMAQ also suffered from several weaknesses such as only having three size bins for different particles, lack of marine aerosol precursors, etc. More future studies are thereby needed for confirmation.

Publications Copernicus
Download
Citation