Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 14, issue 11 | Copyright
Atmos. Chem. Phys., 14, 5513-5527, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Jun 2014

Research article | 04 Jun 2014

Contrasting the direct radiative effect and direct radiative forcing of aerosols

C. L. Heald1,2, D. A. Ridley1, J. H. Kroll1, S. R. H. Barrett3, K. E. Cady-Pereira4, M. J. Alvarado4, and C. D. Holmes5 C. L. Heald et al.
  • 1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
  • 2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
  • 3Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
  • 4Atmospheric and Environmental Research (AER), Lexington, MA, USA
  • 5Department of Earth System Science, University of California, Irvine, CA, USA

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.

Download & links
Publications Copernicus