Articles | Volume 14, issue 10
https://doi.org/10.5194/acp-14-5183-2014
https://doi.org/10.5194/acp-14-5183-2014
Research article
 | 
27 May 2014
Research article |  | 27 May 2014

H2O and HCl trace gas kinetics on crystalline HCl hydrates and amorphous HCl / H2O in the range 170 to 205 K: the HCl / H2O phase diagram revisited

R. Iannarelli and M. J. Rossi

Related authors

The influence of HCl on the evaporation rates of H2O over water ice in the range 188 to 210 K at small average concentrations
Christophe Delval and Michel J. Rossi
Atmos. Chem. Phys., 18, 15903–15919, https://doi.org/10.5194/acp-18-15903-2018,https://doi.org/10.5194/acp-18-15903-2018, 2018
Short summary
Formation of highly oxygenated organic molecules from aromatic compounds
Ugo Molteni, Federico Bianchi, Felix Klein, Imad El Haddad, Carla Frege, Michel J. Rossi, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018,https://doi.org/10.5194/acp-18-1909-2018, 2018
Short summary
Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017,https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Heterogeneous kinetics of H2O, HNO3 and HCl on HNO3 hydrates (α-NAT, β-NAT, NAD) in the range 175–200 K
Riccardo Iannarelli and Michel J. Rossi
Atmos. Chem. Phys., 16, 11937–11960, https://doi.org/10.5194/acp-16-11937-2016,https://doi.org/10.5194/acp-16-11937-2016, 2016
Short summary
The metastable HCl · 6H2O phase – IR spectroscopy, phase transitions and kinetic/thermodynamic properties in the range 170–205 K
S. Chiesa and M. J. Rossi
Atmos. Chem. Phys., 13, 11905–11923, https://doi.org/10.5194/acp-13-11905-2013,https://doi.org/10.5194/acp-13-11905-2013, 2013

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023,https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023,https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023,https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Atmospheric oxidation of new 'green' solvents part II: methyl pivalate and pinacolone
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
EGUsphere, https://doi.org/10.5194/egusphere-2023-282,https://doi.org/10.5194/egusphere-2023-282, 2023
Short summary
Evolution of Organic Carbon in the Laboratory Oxidation of Biomass Burning Emissions
Kevin John Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose-Luis Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-857,https://doi.org/10.5194/acp-2022-857, 2023
Revised manuscript accepted for ACP
Short summary

Cited articles

Abbatt J. P. D., Beyer, K. D., Fucaloro, A. F., McMahon, J. R., Wooldridge, P. J., Zhang, R., and Molina, M. J.: Interaction of HCl Vapor with Water-ice: Implications for the Stratosphere, J. Geophys. Res. 97, 15819–15826, 1992.
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013.
Banham, S. F., Sodeau, J. R., Horn, A. B., McCoustra, M. R. S., and Chesters, M. A.: Adsorption and ionization of HCl on an ice surface, J. Vac. Sci. Technol. A, 14, 1620–1626, 1996.
Broker, W. and Mossman, A. L.: Matheson Gas Data Book, 6th ed., Matheson Gas Products Inc., Lyndhurst, NJ, 1980.
Carslaw, K. S., Peter, Th., and Clegg, S. L.: Modeling the composition of liquid stratospheric aerosols, Rev. Geophys. 35, 125–154, 1997.
Download
Altmetrics
Final-revised paper
Preprint