NO$_x$ cycle and the tropospheric ozone isotope anomaly: an experimental investigation

G. Michalski, S. K. Bhattacharya, and G. Girsch
Department of Earth and Atmospheric Sciences and Department of Chemistry, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA

Correspondence to: G. Michalski (gmichals@purdue.edu)

Received: 16 January 2013 – Published in Atmos. Chem. Phys. Discuss.: 11 April 2013
Revised: 14 March 2014 – Accepted: 1 April 2014 – Published: 21 May 2014

Abstract. The oxygen isotope composition of nitrogen oxides (NO$_x$) in the atmosphere is a useful tool for understanding the oxidation of NO$_x$ into nitric acid/nitrate in the atmosphere. A set of experiments was conducted to examine change in isotopic composition of NO$_x$ due to NO$_x$–O$_2$–O$_3$ photochemical cycling. At low NO$_x$/O$_2$ mixing ratios, NO$_x$ became progressively and nearly equally enriched in 17O and 18O over time until it reached a steady state with Δ^{17}O values of 39.3 ± 1.9 ‰ and Δ^{18}O values of 84.2 ± 4 ‰, relative to the isotopic composition of the initial O$_2$ gas. As the mixing ratios were increased, the isotopic enrichments were suppressed by isotopic exchange between O atoms, O$_2$, and NO$_x$. A kinetic model was developed to simulate the observed data and it showed that the isotope effects occurring during O$_3$ formation play a dominant role in controlling NO$_x$ isotopes and, in addition, secondary kinetic isotope effects or isotope exchange reactions are also important during NO$_x$ cycling. The data and model were consistent with previous studies which showed that the NO + O$_3$ reactions occur mainly via the transfer of the terminal atoms of O$_3$. The model predicts that under tropospheric concentrations of NO$_x$ and O$_3$, the timescale of NO$_x$–O$_3$ isotopic equilibrium ranges from hours (for ppbv NO$_x$ / O$_2$ mixing ratios) to days (for pptv mixing ratios) and yields steady state Δ^{17}O and Δ^{18}O values of 45 ‰ and 117 ‰ respectively (relative to Vienna Standard Mean Ocean Water (VSMOW)) in both cases. Under atmospheric conditions when O$_3$ has high concentrations, the equilibrium between NO$_x$ and O$_3$ should occur rapidly (h) but this equilibrium cannot be reached during polar winters and/or nights if the NO$_x$ conversion to HNO$_3$ is faster. The experimentally derived rate coefficients can be used to model the major NO$_x$–O$_3$ isotopologue reactions at various pressures and in isotope modeling of tropospheric nitrate.

1 Introduction

The NO$_x$ cycle is the key driver of tropospheric chemistry (Monks et al., 2009; Seinfeld and Pandis, 1998) and the stable isotope composition of NO$_x$ is a useful tool for deciphering oxidation mechanisms during photochemical cycling (Michalski et al., 2003; Morin et al., 2008; Savarino et al., 2008). Oxygen isotope analysis is particularly useful for understanding oxidation chemistry because the original oxygen isotopic signatures of NO$_x$ inherited from diverse sources should be quickly erased due to rapid cycling of oxygen in the NO$_x$ system. There are, however, no oxygen isotope measurements of in situ NO$_x$ because it is highly reactive, has low mixing ratios (in the range of pptv to ppbv), and is prone to react with water when concentrated by collection devices. Variations in oxygen isotope abundances are usually quantified using δ (in ‰, or parts per thousand) where δ^{18}O (‰) = $(R_{\text{sam}} / R_{\text{ref}} - 1) \cdot 1000$, where R_{sam} and R_{ref} denote the 18O/16O ratio ($x = 17$ or 18) in the sample and reference, respectively. The Δ^{17}O value is the measure of the 17O excess found in a compound over what is expected based on its δ^{18}O value assuming the rule of mass dependence during isotope partitioning, where Δ^{17}O = 1000 · ln$(1+\delta^{17}$O/1000) − 0.516 · 1000 · ln$(1+\delta^{18}$O/1000) (Miller, 2002). Atmospheric nitrate, which is the main end product of NO$_x$ oxidation chemistry, has characteristic oxygen isotopic variations, with elevated δ^{18}O (Elliott et al., 2009; Hastings et al., 2003) and Δ^{17}O values (Michalski et al., 2003; Morin et al., 2008; Savarino...
et al., 2008), believed to be caused by isotope effects during NOx cycling in atmosphere known as the Leighton cycle (Finlayson-Pitts and Pitts, Jr., 2000; Leighton, 1961).

The Leighton reactions refer to the closed photochemical cycling of NO–O3–NO2 in the atmosphere. It is initiated when NO2 is photolyzed by UV-visible light in the blue region of the spectrum (< 400 nm) yielding a ground state oxygen atom O(3P). The main fate of the oxygen atom is to combine with O2 to form O3, which then oxidizes NO back to NO2 (Finlayson-Pitts and Pitts Jr., 2000; Leighton, 1961):

\[
\begin{align*}
\text{NO}_2 + h\nu & \rightarrow \text{NO} + \text{O}(3P) & \text{(R1)} \\
\text{O}(3P) + \text{O}_2 & \rightarrow ^* \text{O}_3 & \text{(R2)} \\
^*\text{O}_3 + \text{M} & \rightarrow \text{O}_3 + \text{M} & \text{(R3)} \\
\text{O}_3 + \text{NO} & \rightarrow \text{NO}_2 + \text{O}_2. & \text{(R4)}
\end{align*}
\]

Ozone (O3) produced during photolysis (and discharge) in laboratory experiments (Reaction R2 and R3) has high Δ^{17}O values, typically ranging from 30 to 50‰ (known as mass independent fractionation or MIF) (Thiemens and Heidenreich III, 1983; Thiemens and Jackson, 1987; Thiemens and Jackson, 1990) and elevated δ^{18}O values (80–120‰) relative to the parent oxygen reservoir (Janssen et al., 2003; Mauersberger, 1981; Morton et al., 1990). This pattern of isotopic enrichment in O3 results from symmetry restrictions during isotopologue formation (Gao and Marcus, 2001; Hathorn and Marcus, 1999). Isotopically homogenous O3 (16O3) has C2v symmetry, but when one of the terminal atoms (but not the central atom) is isotopically substituted the symmetry is reduced to C3h. The vibrationally excited C3h-type O3 intermediates have a longer lifetime due to increase in the number of allowed vibrational couplings, which facilitates intramolecular and intermolecular energy redistribution. This extended lifetime gives the asymmetric O3 species a higher probability of being quenched (Reaction R3) by a third body (M) relative to the symmetric species (like 16O3 or 16O18O16O and 16O17O16O), which more readily undergoes molecular decomposition back to O + O2. Recent quantum calculations by Ivanov and Babikov (2013) regarding the molecular origin of the symmetry effect suggest that the lifetime of the metastable $^*\text{O}_3$ states differ due to differences of the tunneling rates in/out of the reaction channels for symmetric and asymmetric isotopomers due to distortion of vibrational wave functions by isotopic substitution. The consequence of the symmetry effect is that all of the Δ^{17}O enrichment and a significant portion of the δ^{18}O enrichment are located in the terminal atoms of the O3 molecule. This pattern has been observed by Tuzson and Janssen (2006) by spectroscopy, albeit with large errors. Hence, by isotope mass balance, the Δ^{17}O values of the terminal atoms should be 3/2 times higher than the Δ^{17}O value of the bulk O3 (Michalski and Bhattacharya, 2009). This enrichment is believed to be transferred to various NOx species and to nitrate during oxidation by ozone.

Based on experimental studies of the pressure and temperature dependence of the δ^{18}O and Δ^{17}O values of ozone (Morton et al., 1990; Thiemens and Jackson, 1990), tropospheric O3 should have a relatively narrow range of Δ^{17}O (32 ± 2‰) and δ^{18}O (90 ± 10‰) values. Indeed, some measurements of the δ^{18}O and Δ^{17}O value of O3 in the troposphere (Johnston and Thiemens, 1997; Krankowsky et al., 1995) are similar to laboratory measurements, but most (more than 90%) are below the expected values (Johnston and Thiemens, 1997; Krankowsky et al., 1995; Vicars et al., 2012). It is unclear whether the disagreement between experimental and observed O3δ/O values are due to problems in O3 collection or analytical bias, unknown chemical or exchange reactions in the troposphere, or caused by a different enrichment mechanism when ozone is produced by atoms generated in NO2 photolysis (in atmosphere) rather than in O2 photolysis or discharge (in laboratory).

Regardless, the intimate coupling between NOx and O3 in the Leighton cycle is believed to be the driver of the high δ^{18}O and Δ^{17}O values observed in atmospheric nitrate (Michalski et al., 2003; Morin et al., 2008; Savarino et al., 2008). High δ^{18}O and Δ^{17}O values can be generated in NOx and NOy compounds when O3 transfers one of its oxygen atoms (R4) to the NOx products (Savarino et al., 2008). It has been hypothesized that NO–O2–O3–NO2 photochemical cycling in atmosphere results in NOx becoming enriched in the heavy oxygen isotopes through interactions with O3 during intermediate oxidation steps (Michalski et al., 2003; Morin et al., 2008). Indeed, an initial NOx–O3 isotopic equilibrium is the a priori assumption used in current models that predict atmospheric nitrate Δ^{17}O values (Michalski et al., 2003; Morin et al., 2008; Alexander et al., 2009). However, these equilibrium Δ^{17}O (or δ^{18}O) values are based on assumptions about the isotopic composition of O3 in the troposphere and isotope transfer mechanisms during NOx oxidation. Such assumptions could easily be wrong given the large number of possible reactions that can take place between the isotopologues of O2, O3, NO and NO2 during the Leighton cycle, including photolysis, oxidation and isotope exchange. It was proposed that nitrate’s isotopic compositions can be used as a way of inferring changes in oxidation chemistry in the modern atmosphere (Michalski et al., 2003; Morin et al., 2008) and that ice core nitrate may be a proxy for oxidation chemistry in ancient atmosphere (Alexander et al., 2004; Kunasek et al., 2008). If these approaches are to be implemented, we need a better understanding of the interacting role of the various isotopologues involved in the reactions of the Leighton cycle (Finlayson-Pitts and Pitts Jr., 2000; Leighton, 1961).

Therefore, a quantitative laboratory study that investigates isotope effects arising during the Leighton reactions is required. Here we address this issue for the first time by conducting a series of controlled photolysis experiments and assessing the isotopic enrichment in NOx as a function of reaction time and the partial pressures of O2 and NO2.
Figure 1. Experimental set up for study of isotopic changes in NO\textsubscript{x} produced during Leighton cycle involving isotopologues of O\textsubscript{2}–NO\textsubscript{x}–O\textsubscript{3}. The symbols are, A: Xenon Lamp, B: Quartz window, C: Reaction chamber (~20 L), D: U-trap, E: Oxygen tank, F: Pressure gauge, G: Pirani vacuum gauge, H: NO\textsubscript{2} flask, I: Spiral trap, J: Tesla Discharge chamber, K: Molecular sieve chromatography column, L: Sample tube with Molecular sieve, M: Baratron Gauge, N: Turbo-molecular pump and O: Rotary Pump.

2 Experimental procedure

A cylindrical photolysis chamber attached to a vacuum extraction system (Fig. 1) was used for the experiments. The Pyrex chamber was 122 cm in length and 15 cm in diameter with a total volume of ~20 L. One end of the chamber was fitted with a 6 cm diameter quartz window. A light source was placed ~10 cm from the quartz window and oriented so that the beam passed along the axial direction of the chamber. The other end of the chamber was connected to a vacuum line capable of holding a vacuum of 10−6 torr. Three vacuum components were located between the vacuum pumps and the chamber: a spiral trap for collecting condensable gases, a discharge chamber, and a molecular sieve trap for collecting and separating N\textsubscript{2} and O\textsubscript{2}. The temperature of the chamber was maintained at 298 K by dripping water along the length of the chamber using a recirculation pump.

The light source used to induce NO\textsubscript{2} photolysis was a 150 watt xenon solar simulator (PTI Photon Technology International, Ushio bulb model UXL 151H) that had a maximum output of 3500 lumens at full efficiency. It emits brightly in the visible region and simulates sunlight (6,000K emission spectrum), but its emission in the 300–400 nm range, which the main NO\textsubscript{2} dissociation window, is only ~10 % of the total spectral flux (~1018 photons cm−2 s−1). There was small unwanted tailing flux (less than 1 % of the total) at wavelengths shorter than 300 nm (O\textsubscript{3} dissociation window) which were further reduced via absorption by the quartz window. Light attenuation caused by lamp distance, geometry, and absorption by the quartz window was estimated at 5–10 %. Using the spectral characteristics of the Xe lamp, and the lamp lumen output, the photon flux for three spectral windows (250–300, 300–350, 350–400 nm) were calculated to be 0.46, 0.79, and 1.2 × 1016 photons cm−2 s−1, respectively. Based on the NO\textsubscript{2} dissociation cross sections in these windows (0.9, 2.2, and 5.5 × 10−18 cm2) and unit quantum yields at these wavelengths (Sander et al., 2006), a NO\textsubscript{2} j coefficient of 0.0086 s−1 was calculated. However, this value is considered an upper limit because it assumes that the lamp was operating at full wattage and no light leakage occurs from the collimator, both of which were unlikely.

The NO\textsubscript{2} gas used in the photolysis was produced in the laboratory by reacting 200 torr of NO (99 % pure) with an excess (600 torr) of O\textsubscript{2} (99.99 % pure) for several hours. At these high mixing ratios of NO the reaction goes to greater than 99 % completion in less than one minute. The product NO\textsubscript{2} was then purified using cryogenic separation and stored in a 2 L Pyrex bulb wrapped in aluminum foil to prevent exposure to light. For each experiment an appropriate amount of NO\textsubscript{2} was transferred to a U-trap (20 mL volume) using liquid nitrogen. After pumping away non-condensable gases, the trap was warmed to room temperature and pure NO\textsubscript{2} was allowed to expand into the reaction chamber. The 1000 : 1 chamber to trap volume ratio (20 L: 20 mL) ensured that most of the NO\textsubscript{2} entered the chamber. Ultra high purity O\textsubscript{2} (99.999 %) was then introduced to the chamber through the same U-trap (to flush out small amount of remaining NO\textsubscript{2}) until the desired pressure was reached (50 to 750 torr). Next, the xenon lamp was switched on and the lamp was aligned and focused such that its light entered the reaction chamber through the quartz window.

Three sets of photolysis experiments were carried out. The first set (Set 1) examined the isotope effect that occurred when the time of illumination was varied at a fixed NO\textsubscript{2}/O\textsubscript{2} ratio of 24 × 10−6. In the second set (Set 2), the NO\textsubscript{2}/O\textsubscript{2} mixing ratio was varied from 3.6 × 10−5 to 4.3 × 10−4 by altering the amount of NO\textsubscript{2} used while keeping the O\textsubscript{2} pressure (500 torr) constant and also keeping illumination time constant (~60 min). The final set (Set 3) examined the isotope effect by changing O\textsubscript{2} pressure for a fixed amount of NO\textsubscript{2} (20 × 10−6 mole). In each case, after the specified time, the light was switched off and the vessel was kept in the dark for about 60 min to allow reaction of the residual O\textsubscript{3} with NO. It is assumed that at the conclusion of the photolysis reactions there is a mixture of NO\textsubscript{x} and O\textsubscript{2}. We also assume that higher oxides of nitrogen are not produced significantly and can be neglected. For example, it is known that gas phase N\textsubscript{2}O\textsubscript{3} is formed when NO and NO\textsubscript{2} react, but it rapidly decomposes back to NO and NO\textsubscript{2} at room temperature, inducing isotopic exchange (Sharma et al., 1970; Freyer et al., 1993). Therefore, we consider no significant net production of N\textsubscript{2}O\textsubscript{3} during photolysis.

The NO\textsubscript{x} was collected by pumping the NO\textsubscript{2}/O\textsubscript{2} mixture slowly (~2 hours) though a spiral trap immersed in liquid nitrogen. At this low temperature NO\textsubscript{2} and NO combine to form N\textsubscript{2}O\textsubscript{3} as a stable solid (vapor pressure ~10−14 torr at 77K). After warming the trap the purified NO\textsubscript{x} was transferred to a small trap and converted to N\textsubscript{2} and O\textsubscript{2} by electric discharge produced by a Tesla coil (Savarino et al., 2008; Michalski et al., 2002; Bes et al. 1970). The discharge chamber was a double wall Pyrex cylinder with a grounding screen.

www.atmos-chem-phys.net/14/4935/2014/
surrounding the outer wall and a 5M NaCl solution in the center volume. The tesla coil was immersed in the salt solution, which acts as a homogenous electrode creating potential between the solution and the grounding screen. Discharge occurs in the low pressure NOx contained between the double walls and converts NOx into N2 and O2. The discharge was executed three times, resulting in N2–O2 yields of > 97%. The non-condensable gases were collected after each discharge on a 5A molecular sieve at 77 K. The final O2 fraction was chromatographically separated from the N2 fraction using a 5A molecular sieve column cooled to 173 °K using ethanol slush (Thiemens, 1984). The O2 isotope ratios were determined using a Thermo Delta-V isotope ratio mass spectrometer in dual inlet mode. This method was used in the original calibration of the nitrate standard USGS35 (Michalski et al., 2002) that was subsequently confirmed, within the analytical uncertainty, using thermal reduction (Bohlke et al., 2003) indicating accuracy ~ precision (0.3‰) for this method. The δ18O and δ17O values of the tank O2 were −10.84‰ and −5.69‰ (relative to VSMOW) respectively and the δ-values of the NO2 were −2.26‰ and −1.25‰ as determined by the discharge method.

2.1 Systematic and random errors in the discharge method

The above-described measurement procedure of oxygen isotope ratios of product NO2 involves four important steps: discharge of NO2 to produce O2 and N2, chromatographic separation of O2 from N2 using an MS column, collection of O2 using MS pellets, and its mass spectrometric analysis. We did a few control experiments to assess the uncertainties associated with these steps. Firstly, it is seen that the discharge yield is always less than 100% which could be due to recombination of N2 and O2 along with their various charged and ionic species to form back some amount of NOx. However, the discharge recycles the O2 quickly and the final O2 isotope ratios are expected to be close to the true value. Ozone formation could in principle be a serious issue but its amount is small. We estimate (based on a model discussed later) that only about 0.05µmole of ozone can be produced from 50µmole of oxygen (the amount expected from 50µmole of initial NO2). We also tested the purity of the O2 fraction after its separation from N2 by MS. For the small column used here at room temperature there was always a small amount of nitrogen (estimated to be less than 5% of the total gas) in the O2 fraction. This introduces a small positive change in the δ-value of O2 depending on the relative amount of N2. Collection of oxygen was done by ~5 pieces of 5A MS pellets kept at LN2 until O2 was completely adsorbed (as indicated by line pressure). The gas was released by keeping the tube at room temperature for at least 30 min. Based on control experiments using tank O2, we noted that this particular step increases the δ18O value by 0.1 to 0.2‰e. To test the overall effect we analyzed three aliquots of tank NO2 by this method and found the uncertainty to be 0.6 (δ18O) and 0.4 (δ17O)‰. Assuming additional uncertainty due to collection of NOx we estimate 1σ errors of 1.2 and 0.6‰e in the determination of δ18O and δ17O of NOx in our experiment.

2.2 Set 1 experiment

Experiments in this set were designed to determine the time required for the NOx cycle to achieve isotopic steady state under the applied photochemical conditions (Fig. 1). Photochemical steady state in the NOx–O3 cycling (Reactions R1–R3) is well known under tropospheric conditions (Finlayson–Pitts and Pitts, 2000; Leighton, 1961) by:

\[[O_3]_{\text{iss}} = j_1[N_2]/(k_4[NO]) \]

where \(j_1 \) is the photon flux and \(k_4 \) is the rate constant of Reaction (R4). For initial \([NO_2]_0\) with \([O_3]_0 = [NO]_0 = 0\) solving for the evolution of \(O_3\) (which is always equal to NO in the steady state) we obtain (Seinfeld and Pandis, 1998):

\[
[O_3]_{\text{iss}} = [NO]_0 \times \frac{\left(\frac{j_1}{k_4} \right)^2 + \frac{4j_1}{k_4} [NO_2]_0}{\frac{j_1}{k_4}} - \frac{j_1}{k_4}
\]

This steady state is shifted when NOx is present in high mixing ratios (> 1ppmv) because the O sink reactions given by:

\[
\text{NO}_2 + O \rightarrow \text{NO} + O_2
\]

\[
\text{NO} + O + M \rightarrow \text{NO}_2
\]

become important (Crutzen and Lelieveld, 2001) and reduce the \(O_3\) production rate so that Reaction (R6) no longer holds true.

As mentioned, the experiments in Set 1 tested the time scale for achieving NOx–O3 isotopic steady state. When there was 20ppmv NO2 in the chamber, the observed NOx–O3 isotopic steady state was achieved on the order of 30 minutes (Fig. 2). The isotopic steady state was attained more slowly than the time required for the chemical steady state (~5–6 minutes). This is mainly due to isotope mass balance dynamics, which require multiple Leighton cycles to occur before isotopic equilibrium is reached, and possibly because of small mixing scale length. When the initial NO2 amount was higher (for example, ~240 ppmv) the photolytic supply of O-atom was higher and isotope exchange between O and NOx was faster than the time required to achieve NOx–O3 steady state and overall isotopic equilibrium was expected to be achieved in less time (based on the chemical simulation model described later). Based on these considerations, we decided to carry out photolysis experiments for the duration of one hour to ensure that NOx–O3 isotopic steady state is always achieved.
Table 1. Oxygen isotopic composition of NOx modified by ozone in a NOx cycle experiment where the O-atom is supplied by dissociation of NO2 by UV (Leighton cycle) with O2 pressure at 500torr and exposure time of 60 min. The δ-values refer to total NOx produced and are relative to the tank oxygen in ‰ to express enrichment. The model values are obtained using coefficients 1.352 and 1.252 for formation of NOx and NO2, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>NO2 (µmole)</th>
<th>O2 (µmole)</th>
<th>Ratio NO2/O2</th>
<th>δ17O</th>
<th>δ18O</th>
<th>Δ17O</th>
<th>Δ18O</th>
<th>Model values δ17O</th>
<th>Δ17O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>236.0</td>
<td>5.5 × 10^3</td>
<td>4.3 × 10^{-4}</td>
<td>27.3</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>2</td>
<td>177.0</td>
<td>5.5 × 10^3</td>
<td>3.2 × 10^{-4}</td>
<td>35.8</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>3</td>
<td>150.9</td>
<td>5.5 × 10^3</td>
<td>2.8 × 10^{-4}</td>
<td>38.0</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>4</td>
<td>118.0</td>
<td>5.5 × 10^3</td>
<td>2.2 × 10^{-4}</td>
<td>45.9</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>5</td>
<td>89.7</td>
<td>5.5 × 10^3</td>
<td>1.6 × 10^{-4}</td>
<td>51.0</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>6</td>
<td>59.0</td>
<td>5.5 × 10^3</td>
<td>1.1 × 10^{-4}</td>
<td>62.0</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>7</td>
<td>37.4</td>
<td>5.5 × 10^3</td>
<td>6.8 × 10^{-5}</td>
<td>72.5</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
<tr>
<td>8</td>
<td>19.5</td>
<td>5.5 × 10^3</td>
<td>2.5 × 10^{-4}</td>
<td>77.6</td>
<td>95.2</td>
<td>34.3</td>
<td>34.3</td>
<td>86.0</td>
<td>96.6</td>
</tr>
</tbody>
</table>

Tank Oxygen δ-values: −5.69 and −10.84 in ‰ relative to VSMOW.

Figure 2. The time scale for NOx to achieve isotopic equilibrium in δ18O and Δ17O is approximately 30 min based on NOx cycling experiments (Set 3) was performed by keeping the initial NO2 amount fixed at ∼20 µmole and changing the O2 pressure from 50 to 750 torr (Table 2). The results are plotted in terms of NOx Δ17O and δ18O values as a function of O2 pressure (Fig. 4).

2.3 Set 2 and Set 3 experiments

The second set of experiments (Set 2) was designed to determine the change in the NOx isotopic composition as a function of different initial NO2 mixing ratios at constant pressure. This was achieved by varying NO2 amount from 19.5 × 10^{-6} to 236.0 × 10^{-6} moles (i.e. µmole) while keeping the O2 at a pressure of 500torr corresponding to 0.55 moles (Table 1 and Fig. 3). In contrast, the last set of experiments (Set 3) was performed by keeping the initial NO2 amount fixed at ∼20 µmole and changing the O2 pressure from 50 to 750 torr (Table 2). The results are plotted in terms of NOx Δ17O and δ18O values as a function of O2 pressure (Fig. 4).

3 Discussion and model predictions

Both the data sets show that the steady state δ18O and Δ17O values are a strong function of the NO2/O2 mixing ratio (Fig. 5). As the NO2 mixing ratio decreased, the Δ17O and δ18O values of NOx increased until they were nearly constant when NO2 mixing ratio reached about 20 ppmv (Tables 1 and 2). The highest (relative to tank O2) NOx δ18O values, 84.2 ± 4 ‰ (n = 3), were from the experiments conducted at pressures around 750 torr (typical atmospheric pressure), with corresponding Δ17O values of 39.3 ± 1.6 ‰ (Table 2). We could not investigate enrichments for mixing ratios lower than 20 ppmv NO2 because of minimum sample size.
G. Michalski et al.: NO\textsubscript{x} cycle and the tropospheric ozone isotope anomaly

Figure 4. Change in δ-values of NO\textsubscript{2} as a result of photochemical cycling achieved with 20μ mole of NO\textsubscript{2} at oxygen pressures ranging from 50 to 750 torr in a 20 L chamber. As the O\textsubscript{2} pressure increases the ozone formation rate increases imparting higher enrichment to NO\textsubscript{2}.

Figure 5. Δ^{17}O of NO\textsubscript{2} based on combined data from Table 1 (open symbols for variable initial NO\textsubscript{2}) and Table 2 (filled symbols for variable O\textsubscript{2} pressure) plotted as a function of NO\textsubscript{2}/O\textsubscript{2} mixing ratio. As the NO\textsubscript{2} mixing ratio decreases, the Δ^{17}O values increase until they remain constant at a value of about 40 ‰ when the NO\textsubscript{2} mixing-ratio reaches about 20 ppmv (seen for both data sets). At the same mixing ratio, but higher O\textsubscript{2} pressure, the ozone formation rate increases resulting in more ozone oxidation of NO and larger Δ^{17}O values in the product NO\textsubscript{2} (the filled symbols).

We hypothesize that the high isotope enrichments, reflected in both the δ^{18}O and the Δ^{17}O values, occur when O\textsubscript{3} oxidation of NO is faster than NO\textsubscript{x}–O\textsubscript{2} isotopic exchange. Isotopic enrichments associated with the formation of O\textsubscript{3} have been extensively studied (Mauersberger et al., 1999; Guenther et al., 1999; Mauersberger et al., 2003; Thiemens, 1999). At temperature and pressure range of the present experiments, the recombination process should generate O\textsubscript{3} with δ^{18}O values between 90–130 ‰ and Δ^{17}O values between 30–45 ‰ (Mauersberger et al., 2003). Our hypothesis suggests that that during oxidation of NO, the oxygen isotopic enrichments in O\textsubscript{3} are transferred to the product NO\textsubscript{2}. However, the enrichment in the product NO\textsubscript{2} gets diluted or even erased when NO\textsubscript{x} and O atom exchange is fast via Reactions (R7a), (R7b), (R9), and (R10). This is because O\textsubscript{2} dominates the oxygen reservoir by about four orders of magnitude compared to O\textsubscript{3} or O-atoms and any O atoms produced by NO\textsubscript{2} photolysis quickly equilibrate with the O\textsubscript{2} via Reaction (R8). The equilibrated oxygen atom loses the heavy isotopic signal that arises from the Reactions (R2) and (R3). Therefore, there is a competition between the NO\textsubscript{x}–O atom exchange and the oxidation by O\textsubscript{2}. This hypothesis was tested using the chemical kinetic simulations discussed below.

Plots of oxygen isotope enrichments in dual isotope ratio space support the hypothesis that NO\textsubscript{x} cycling effectively equilibrates NO\textsubscript{x} with O\textsubscript{3} (Fig. 6). The NO\textsubscript{x}$^{\delta^{17}}$O and δ^{18}O data in both experiments align nearly along a line of slope 1 reflecting the progressive transfer of O\textsubscript{3} isotopic ratios to NO\textsubscript{x}. This slope value is similar to the one found experimentally for O\textsubscript{3} isotope ratios by earlier workers (Mauersberger et al. 2005) as shown in Fig. 6. The observed NO\textsubscript{2} isotopic equilibrium values, when the NO\textsubscript{x}–O\textsubscript{2} exchange was minimized (i.e., at \sim20 ppmv and O\textsubscript{2} pressure of 750 torr), yielded a mean Δ^{17}O value of 39.3 ± 1.9 ‰ and δ^{18}O value of 84.2 ± 4 ‰. The corresponding values expected for bulk O\textsubscript{3} enrichment at 750 torr (based on the model discussed later) are 30.6 and 90.4 ‰. Unfortunately, in the present experiment the O\textsubscript{3} could not be measured directly for its isotopic composition due to its low amount (\sim0.2 to 20 \times 10$^{-9}$ mole) and that it was mixed in large quantity of

\[QO + O \leftrightarrow Q + OO \] \hspace{1cm} (R8)

\[QNO + O \leftrightarrow ONO + Q \] \hspace{1cm} (R9)

\[NQ + O \leftrightarrow NO + Q \] \hspace{1cm} (R10)

Analogous exchanges occur with the 17O (P) isotopic species. All three exchange rate constants are of similar magnitude (Anderson et al., 1985; Jaffe and Klein, 1966; Sharma et al., 1970) but the NO\textsubscript{x} exchange rate constants are slightly higher than the rate for O–O\textsubscript{2} exchange, albeit with considerable uncertainties (Jaffe and Klein, 1966). Since the overall rate of exchange is proportional to concentration, isotopic exchange between NO\textsubscript{x} and O\textsubscript{2} (the bath gas) via R8–R10 is expected to be a strong function of mixing ratio.

requirement for isotope analysis by dual-inlet method. For example, we could not investigate typical troposphere ratios (\sim10 ppbv) which would have resulted in only about 10$^{-9}$ mole of NO\textsubscript{2} in the system.

A qualitative analysis of the reaction kinetics showed that the key to understanding the two data sets (Set 2 and Set 3) is the exchange reactions between oxygen atoms and NO\textsubscript{x} or O\textsubscript{2} (for simplicity we write: $O = ^{16}O$, $P = ^{17}O$ and $Q = ^{18}O$):

\[QO + O \leftrightarrow Q + OO \] \hspace{1cm} (R8)

\[QNO + O \leftrightarrow ONO + Q \] \hspace{1cm} (R9)

\[NQ + O \leftrightarrow NO + Q \] \hspace{1cm} (R10)
Table 2. Oxygen isotopic composition of NO\textsubscript{x} modified by ozone formed by UV in presence of oxygen with O-atom supplied by dissociation of NO\textsubscript{2} (Leighton cycle); the δ-values show enrichment of produced NO\textsubscript{x} relative to tank oxygen in ‰. Model values are calculated by Kintecus with coefficients chosen for 18O and 17O asymmetric ozone formation to match the observed values of isotopic enrichment as given in Table 5.

<table>
<thead>
<tr>
<th>Sample</th>
<th>NO\textsubscript{2} (µmole)</th>
<th>Oxygen (µmole)</th>
<th>O\textsubscript{2} (torr)</th>
<th>NO\textsubscript{2}/O\textsubscript{2}</th>
<th>δ17O</th>
<th>δ18O</th>
<th>Δ17O</th>
<th>Δ18O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.5</td>
<td>55.5</td>
<td>105</td>
<td>3.6 × 10-4</td>
<td>12.4</td>
<td>18.3</td>
<td>3.0</td>
<td>14.9</td>
</tr>
<tr>
<td>2</td>
<td>19.5</td>
<td>75.5</td>
<td>105</td>
<td>2.4 × 10-4</td>
<td>16.6</td>
<td>19.9</td>
<td>6.2</td>
<td>20.2</td>
</tr>
<tr>
<td>3</td>
<td>20.4</td>
<td>75.5</td>
<td>105</td>
<td>1.9 × 10-4</td>
<td>25.8</td>
<td>30.2</td>
<td>10.1</td>
<td>26.1</td>
</tr>
<tr>
<td>4</td>
<td>19.5</td>
<td>10</td>
<td>55.5</td>
<td>1.6 × 10-5</td>
<td>36.1</td>
<td>38.7</td>
<td>15.9</td>
<td>37.8</td>
</tr>
<tr>
<td>5</td>
<td>20.4</td>
<td>5</td>
<td>5</td>
<td>2.2 × 10-5</td>
<td>51.3</td>
<td>56.6</td>
<td>21.6</td>
<td>47.7</td>
</tr>
<tr>
<td>6</td>
<td>20.4</td>
<td>10</td>
<td>5</td>
<td>3.3 × 10-5</td>
<td>64.7</td>
<td>67.1</td>
<td>29.1</td>
<td>61.8</td>
</tr>
<tr>
<td>7</td>
<td>19.5</td>
<td>10</td>
<td>5</td>
<td>4.4 × 10-5</td>
<td>75.1</td>
<td>76.6</td>
<td>34.4</td>
<td>70.3</td>
</tr>
<tr>
<td>8</td>
<td>19.5</td>
<td>51.3</td>
<td>5</td>
<td>5.5 × 10-5</td>
<td>77.6</td>
<td>77.5</td>
<td>36.2</td>
<td>75.3</td>
</tr>
<tr>
<td>9</td>
<td>20.4</td>
<td>66.3</td>
<td>5</td>
<td>6.6 × 10-5</td>
<td>78.1</td>
<td>75.7</td>
<td>37.5</td>
<td>78.2</td>
</tr>
<tr>
<td>10</td>
<td>20.4</td>
<td>77.6</td>
<td>5</td>
<td>7.7 × 10-5</td>
<td>83.6</td>
<td>81.9</td>
<td>39.7</td>
<td>79.8</td>
</tr>
<tr>
<td>11</td>
<td>21.0</td>
<td>82.1</td>
<td>5</td>
<td>8.2 × 10-5</td>
<td>87.1</td>
<td>86.5</td>
<td>40.7</td>
<td>80.3</td>
</tr>
<tr>
<td>12</td>
<td>21.0</td>
<td>82.1</td>
<td>5</td>
<td>8.2 × 10-5</td>
<td>86.2</td>
<td>86.5</td>
<td>39.9</td>
<td>80.3</td>
</tr>
<tr>
<td>13</td>
<td>21.0</td>
<td>82.1</td>
<td>5</td>
<td>8.2 × 10-5</td>
<td>79.8</td>
<td>79.6</td>
<td>37.3</td>
<td>80.3</td>
</tr>
<tr>
<td>Mean</td>
<td>20</td>
<td>75.0</td>
<td>Mean</td>
<td>5.13 × 10-5</td>
<td>84.4</td>
<td>84.2</td>
<td>39.3</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Note: Chamber size is 20 L and exposure time is 30 min.
Tank Oxygen δ-values: −5.69 (δ17O) and −10.84 (δ18O) in ‰ relative to VSMOW.
* Δ17O = 1000 ln(1 + δ17O/1000) − 0.516 ln(1 + δ18O/1000) measures the magnitude of mass independent enrichment.

Figure 6. The modeled ozone δ17O versus δ18O values (O), constrained by the NO\textsubscript{x} model and NO\textsubscript{x} isotope observations are similar to experimentally obtained values by other workers. The observed δ17O versus δ18O of NO\textsubscript{x} (●) obtained by photochemical recycling in presence of O\textsubscript{2} (experiments 2 and 3) has a slope near unity (1.03) similar to O\textsubscript{3} (0.95), which supports the O\textsubscript{3} to NO\textsubscript{x} isotope transfer mechanism. The isotopic offset of NO\textsubscript{x} relative to O\textsubscript{3} is likely a consequence of mass dependent kinetic and equilibrium effects occurring during NO\textsubscript{x} oxidation and exchange reactions during the cycle. The inset shows good agreement (slope = 0.997; r2 = 0.991) between model predictions of ozone Δ17O with experimentally observed values by Mauersberger et al. (2005)
than our observed value of ~39.3 ‰. Part of this discrepancy can be explained by the NOx–O exchange still occurring at 20 ppm NOx/O2 mixing ratio. The second possibility is that a fraction of the NO and O3 reactions are occurring through abstraction of the central oxygen atom in O3 (Redpath et al., 1978; Vandenende et al., 1982; Vandenende and Stolte, 1984). In this case the 1.5 factor used to scale the bulk O3 isotope ratios would be too high. Savarino et al. (2008) performed a single step oxidation experiment of NO by O2 to derive a conversion formula (= 1.18·Δ17O(O3)+6.6), which would give NO2Δ17O value (42.7 ‰) only slightly higher than our observed value.

It is unlikely that any normal or anomalous isotope effects were caused by photolysis or self shielding in the chamber. Firstly, in the experiments with the highest Δ17O values (700 torr, 20 µmol) the NO2 number density (6 × 1015 molecule/cm3), cross section (6 × 10−19 cm2) and chamber length 122 cm would result in only 3 % attenuation of the incoming light (Beer–Lambert law). In contrast, the exiting light would decrease by 32 % in the experiment with the lowest observed isotope anomaly, the opposite of what would be expected if self shielding were present. Secondly, the light source warms its end of the chamber, relative to the opposing end, which would induce rapid convective mixing within the chamber. This would move any shielded NO2 located at the far end of the chamber to the front where it would be re-photolyzed. Based on the experimental J coefficient (0.0086 s−1) the lifetime for NO2 photolysis is less than 2 minutes, so each NO2 molecule undergoes ~120 photolysis reactions in different parts of the chamber and would unlikely be affected by any potential self shielding that requires gases to be isolated in space and time. A related issue is possible isotope fractionation associated with photolysis. Zero point energy differences during photolysis of NO2 isotopologues have been demonstrated experimentally (Michalski et al., 2004) but these were detected only under jet cooled conditions where population of ground state rotational levels was minimized. At the temperature of our experiments (298K) the NO2 absorption spectrum is convoluted and has chaotic state mixing near the dissociation limit (Delon et al., 2000), which would likely limit any zero point energy effect during photolysis. Based on this consideration, no isotope effect was imposed on the photolysis reactions in the kinetic modeling of the data.

3.1 Chemical kinetic modeling

In order to quantitatively interpret the observed NOx isotope values and evaluate the recombination rate constants of the various O3 isotoomers and isotopologues, a chemical kinetic model was used. The model called Kintecus (Ianni, 2003) simulated isotope effects that occur during the photochemical cycling of NOx by tracking interactions among the major isotopologues present in the chamber. The initial isotopologue reactant concentrations, the forward and backward reactions between various isotopologues, and their rate constants are supplied as inputs. The rate equations are solved numerically and the products are accumulated dynamically as the system evolves up to a pre-specified period (60 min in the present case). The model calculates the number of molecules of each reactant at small intervals (~0.1 sec to 1 µsec) and finally displays the results at chosen time intervals.

3.1.1 Reactants, their initialization and delta definition

The model was initialized with the following 17 species: O, P, Q, OO, OP, OQ, ONO, PNO, QNO, NO, NP, NQ, OOO, QQO, OQQ, OPO, and OOP. Note that we neglect to differentiate between 15N and 14N since the N-isotopes are not of our concern in these experiments. We also did not include minor species like PP or QQ or QQQ etc. since their influence on the isotope system is small due to their low natural abundances. This neglect causes a minor problem of isotope balance since, in reality, all possible reactions involving all possible isotopologues occur in the reaction chamber and they affect the final abundances of the species. Obviously, the heavy isotopologues distributed among the neglected species are not accounted for in the calculation of final delta values. However, this approximation results in model predictions that differ only slightly (less than 0.1 ‰) from the values if the minor isotopologues were included. For example, when we estimate isotope ratio Q/O in oxygen from molecular species ratio [OQ]/[2[OO]+[OP]+[OQ]] disregarding contribution from QQ isotopologue the true ratio Q/O would be underestimated by only about 2.4 ppt.

Following the above constraint we need to define appropriately and consistently the isotope ratios of O3, NO2 and NO in the model so that all δ-values are expressed in terms of enrichment relative to tank oxygen composition. We note that in experiments involving ozone formation and its analysis O3 is usually first converted to O2 and measured in IRMS. The distinction between isotopologues like OQQ and OOQ is not maintained there. But in the model output these species are generated and have to be counted separately so that the model calculation of δ-values of ozone keeps track of the total number of O, P and Q isotopes. In this case, we use isotopic abundance or atom percent in O2 and O3 to calculate model δ-values of ozone:

For O2
\[P/O = (O[OO]/2[OO]+[OP]+[OQ])/Q/O = ([Q][2[OO]+[OP]+[OQ]]) \]
For O3

In contrast, for NO2 and NO the δ-values in the model can be defined based on species ratio as usual for mass spectrometric measurements. Therefore, in this case we use:

For O2
\[P/O = (O[OO])/2[OO])/Q/O = ([Q][2[OO]]) \]
For NO2
\[P/O = [PNO]/2[ONO]) \]
3.1.2 Choice of kinetic rate constants

Once initialized, the Kintecus simulation after a given run produces isotopologues of all secondary reactants based on rate laws and constants (in units of cm3 s$^{-1}$ for bimolecular reactions and cm6 s$^{-1}$ for tri-molecular case) as listed in Table 4. Rate constants of NO oxidation by O-atom and O$_3$ were taken from the JPL listing (Sander et al., 2006) as was the rate for reaction O + ONO. The rates for all reactions involving isotopologues (either in dissociation or bi-molecular reactions) were adjusted for the reaction channel symmetry. For example, rate constant of the reaction PNO → P + NO was taken to be half of the ONO → O + NO rate constant. For reactions Q + ONO and P + ONO the collision frequency factors of 0.957 and 0.978 were used following the method of Pandey and Bhattacharya (2006). Rate constants that produced the minor oxygen isotopologues of nitrogen oxides (where no experimental data is available) were assumed to be the same as the major isotopic species (i.e., ignoring any kinetic isotope effect—KIE).

The NO$_x$ exchange reaction rate constants were taken from published works. The forward exchange rate (k_f) of Q isotope with ONO was based on Jaffe and Klein (1966). For backward exchange rate (k_b) we used the equilibrium constant (K_{eq}) tabulated by Richet et al. (1977) since at equilibrium (at any given temperature) $K_{eq} = k_f / k_b$. Similar considerations were used for P + ONO exchange as discussed in Pandey and Bhattacharya (2006). In a similar way, exchange rates of O-atoms with NO were derived using Anderson et al. (1985) and Richet et al. (1977). Finally, the NO oxidation by O$_2$ was taken from Finlayson and Pitts (2000). For completeness, we included exchange of NQ with ONO and NP with ONO using the rate constants given by Sharma (1970) and assuming a mass dependent isotope exchange rate.

A rate coefficient for NO$_2$ dissociation that reproduced the time dependent isotopic equilibration data (Fig. 2) was 0.004 s$^{-1}$ and this was used as the coefficient for all NO$_2$ isotopologues but corrected for channel symmetry factors. This value is slightly less than the J coefficient estimated from the xenon lamp output for reasons explained before. We also tested the photolysis model’s dependence on the NO$_2$ dissociation rate (j coefficient) and found little difference in the predicted NO$_x$ isotope values ($\pm 0.5\%$) when the j was increased by a factor of 1000 (4 s$^{-1}$). The j coefficient, however, does change the timescale to reach isotopic steady state of NO$_x$ and the number 0.004 s$^{-1}$ was selected to match the observed time to isotopic equilibrium in experiments of Set 1. This is analogous to estimating O$_3$ dissociation rate constant by measuring the product O$_2$ amount (Pandey and Bhattacharya, 2006) or NO$_2$ j coefficients using O$_3$ steady state concentrations (Sakamaki et al., 1980). These simulations confirm our expectation that the NO$_2$ j coefficient controls the timescale to NO$_x$–O$_3$ equilibrium in the Leighton system. The model does not distinguish between the two N-isotopes
and it also assumes that only terminal atoms take part in reaction or dissociation of tri-atoms.

3.1.3 Rates of ozone formation and dissociation

The rate constants of O3 isotopologue formation were the crucial part of the reaction scheme because in these reactions the mass independent isotopic enrichment or MIF arises. These formation rates at low pressure (~50 torr) were mostly taken from Janssen et al. (2001). For the OOP case the relation between zero point energy changes and rate constant ratios (Janssen et al., 2001) was used (See discussion in Bhattacharya et al., 2008). We note that out of the nine rate constants only the rates of O + OQ → OOQ and O + OP → OOP are surprisingly large and these are the reactions that essentially determine the level of MIF in O3 (Janssen et al., 1999). We shall assume that the observed pressure dependence of O3 MIF is due only to the variation in these two rates. This hypothesis is based on the observation of Janssen et al. (1999) that O + OQ → OOQ is the channel which “almost exclusively is responsible for the observed enrichment in 35O3”. With this simplification, the present model can be used to find the pressure dependence of these two rate coefficients relative to the rate of O + OO → OOO (denoted as r^{18} and r^{17}) by fitting the modeled Δ^{17}O of NO2 with the observed values. There is another important constraint in the selection of r^{18} and r^{17}, namely, the model δ-values of O3 at various pressures should match those that occur by pressure variations (Morton et al., 1990; Mauersberger et al., 2005). We found that it is possible to obtain a consistent set of rate constants (given in terms of r^{18} and r^{17} values and shown in Table 5 and Fig. 7) corresponding to various pressures which satisfy both the O3 MIF data and our observed NOx Δ^{17}O data.

The O3 amount at any stage is quite small ($O3/NO2$ ratio is about 3×10^{-4} at 20 μmole of NO2 at O2 pressure of 50 torr) but for proper calculation of the isotopic effect one has to account for O3 dissociation. The rate constants of dissociation of various O3 isotopologues were taken from Pandey and Bhattacharya (2006) and Chakraborty and Bhattacharya (2003) normalized to the rate for the main O3 isotopologue 16O18O16O; the latter was fixed by taking a NO2/O3 cross section ratio of ~4000 at the relevant wavelength (< 400 nm) used in the experiment. Because the O3 is a minor component in the system its dissociation rate does not affect significantly the final model outcome. This set of reactions, being mass dependent in nature, does not have a significant effect on the predicted Δ^{17}O value of NOx.

3.1.4 Accounting for isotopes of total NOx in the model

The output of the photolysis model showed that at the end of each exposure period the chamber contained a mixture of NOx and oxygen compounds (O, O3, O2). We expect these gases would continue to react after the light source was turned off. In order to account for this, at the end of each 60 minute simulation the resultant isotopologue number densities for all species were used as inputs to a second run simulation that was identical to the first except all coefficients were set to zero. This “dark” phase simulation was run for two hours to account for the one hour period after the light was turned off and the average residence time of NOx in the chamber during the collection step. The simulations show that O3 and O isotopologues quickly react (within several seconds) with NO to form NO2. During these two hours without photolysis, NO continues to react with O2 with a rate primarily controlled by the O2 number density (pressure). For example, at the end of the 500 torr O2 light simulation, NO2 accounts for 71 ± 1 % of NOx oxygen regardless of the initial NO2 concentration, but it accounts for 89–99% of NOx oxygen at the end of the dark simulation. In contrast, NO2 makes up only 7% of NOx oxygen in the 50 torr/19 μmol light simulation and increases to only 39% during the dark simulation. We note that the amount of NO converted into NO2 during the dark phase, at a given O2 pressure, goes as the square of the NO concentration i.e., dNO2$/dt = k [O2][NO]^2$. For example, in the 500 torr experiment using an initial NO2 of 237 μmol, the NO accounted for 28% of NOx oxygen at the end of the photolysis simulation but decreased to 1% of NOx oxygen by the end of the dark phase. In contrast, in the 19 μmol (50 torr) experiment, NO (26% NOx oxygen) decreases to only 11% of NOx oxygen.

The final NOx δ-value was calculated based on the oxygen mole fractions (f) of NOx and NO and their respective final δ-values at the end of the dark simulation period of two

Figure 7. Variation of rate coefficient ratios of asymmetric heavy ozone formation as a function of pressure. r^{18} values and r^{17} values denote rate factors of OOQ formed by O + OQ + M → OOQ and OOP formed by O + OP + M → OOP relative to the formation of OOQ, respectively. These values are derived by trial and error method using the Kintecus model such that the simulated δ-values of O3 match the experimental values in Mauersberger et al. (2005).
Table 4. Adopted rate constants of reactions involving isotopomers of the species taking part in photolysis of NO$_2$ in presence of oxygen at 50 torr. The factors for the formation rates of heavy ozone isotopologues are given in Table 6 and discussed in the text.

![Table 4](image)

hours,

\[
\delta_{NO_2} = f_{NO_2} \cdot \delta(NO_2) + f_{NO} \cdot \delta(NO) \\
\delta_{NO} = 2[NO_2]/(2[NO_2] + [NO]) \quad \text{and} \quad \delta_{NO} = [NO]/(2[NO_2] + [NO])
\]

Two effects occur during the dark phase simulation reactions that impact the final NO$_x$ isotope composition. The first is the NO$_2$–NO equilibrium (Sharma et al., 1970). In both the light and dark simulations, at all steps in the model we chose each step to be ~ 60 s there was a constant offset between the NO$_2$ and NO 18O values (42 ± 1.2‰) but the Δ^{17}O values were essentially equal within ±0.1‰. This reflects the mass dependent nature of the equilibrium for the pair’s isotopic exchange and suggests that under the experimental conditions, the NO$_x$ isotope exchange occurred on a time scale faster than the oxidation of NO. The second effect was that the final dark simulation NO$_x$$\delta^{18}$O and Δ^{17}O values were reduced relative to the “light” simulation values and this reduction was proportional to the amount of NO that was oxidized by O$_2$ in the dark. This was because the O$_2$$\delta^{18}$O and Δ^{17}O values are defined as 0‰ relative to tank, which are much lower than the same values in NO$_x$ at the end of the light simulation. During the 500 torr simulations, the dark simulations resulted in isotope dilution that

www.atmos-chem-phys.net/14/4935/2014/

Atmos. Chem. Phys., 14, 4935–4953, 2014
remained fairly constant, with the NO$_x$$\delta^{18}$O value decreasing by an average of -11 ± 1.6‰ and its Δ^{17}O decreasing by -5 ± 0.9‰. This corresponds to 18 ± 0.03% of the final NO$_x$ oxygen atoms arising from the 2NO + O$_2$ reaction. The constant mole, variable pressure experiments have a wider range of this reaction contribution to NO$_2$ (from 7 to 22%).

3.2 Constraint on O$_3$ formation rate constants

The observed isotope values in NO$_x$ were used to constrain the O$_3$ isotopologue formation rate constants in the model. First, the rate coefficients for reactions O + OQ + M → OQQ + M and O + OP + M → OOP + M were selected that would reproduce closely the δ-values reported by Morton et al. (1990) and Mauersberger et al. (2005) for pressures 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, and 750 torr of O$_2$. These two isotopologue rate factors are denoted r^{18} and r^{17} (Table 5) and their reaction rate constants are obtained by multiplying the O + OO + M → OOO + M rate constants by these factors (Table 4). The Kintecus model was run with these pressure dependent rate constants while keeping the NO$_2$ amount at 20 µmole. As an example, at a pressure of 50 torr the chosen enrichment factors were: $r^{18} = 1.450$ and $r^{17} = 1.335$ (Table 5). The resulting 60 min Kintecus

...
NO$_x$–O$_3$ light simulation resulted in O$_3$δ18O and δ17O values of 128.0‰ and 112.5‰ which match exactly the experimental values of Morton et al. (1990) and Mauersberger et al. (2005). The model predicted a δ17O value of NO$_x$ of 4.2‰, which compares well with the observed value of 3.0‰ (Table 2). Across all simulations the differences between the modeled and experimental O$_3$ δ / Δ values were minimal (Table 5), smaller than 0.8‰ for both δ18O and δ17O (Fig. 6) and 0.5‰ for Δ17O. We note that the experimental values O$_3$δ values reported by Morton et al. (1990) and Mauersberger et al. (2005) have large dispersions and we used a logarithmic function to fit the data points in order to estimate the enrichments at specified pressures (Table 5). Additionally, their experiments refer to the photolytically produced O$_3$ δ-values in an O$_2$–N$_2$ system whereas the modeled values in this study refer to O$_3$ formation where the O-atoms are supplied by NO$_2$ dissociation. Unlike those studies, this O atom and O$_3$ can exchange/react with NO and NO$_2$. The rate constant values that were obtained by this fitting technique may have some limitation in application to O$_3$ formed in pure O$_2$–N$_2$. However, they should be appropriate in case of atmospheric applications.

3.3 Comparison of model and observed NO$_x$ δ18O and Δ17O values

The model predicted Δ17O and δ18O values for a chosen set of experimental conditions, are given in Fig. 3/Table 1 (for Set 2) and Fig. 4/Table 2 (for Set 3) along with the observed values. There was excellent agreement between the observed Δ17O values and those derived by the model for both the sets (compare columns 7 and 10 in Table 1 and columns 8 and 11 in Table 2). For Set 3 the agreement was, on average, within 2‰ and the model-observed fit had a slope of 0.97 with a $r^2 = 0.97$. In Set 2 experiments, the model-observed agreement for Δ17O values was even better, typically within 0.1‰, with a model-observed slope of 1.06 ($r^2 = 0.99$). In general, the agreement between the model and observations was better at the low and high pressure conditions. The maximum model-observed Δ17O difference was 4‰ (about a 10‰ offset from the observed value) and occurred for the 400 torr case (Table 2). Considering an estimated error in experimental determination of Δ17O value to be 1.9‰ the observed mean difference is within the expected range and attests to the validity of the model.

Both data sets show a decrease in the Δ17O value of NO$_x$ with an increase in the ratio NO$_2$/O$_2$ and the modeled Δ17O values reproduce this feature quite well (Fig. 5). It is clear that there is opposing effect of oxygen pressure (or amount) and initial NO$_2$ amount on the final Δ17O value of NO$_x$. As the O$_2$ pressure increases the O$_3$ formation rate increases. For example, the Kintecus output shows that for increase of pressure from 100 torr to 700 torr the average O$_3$ formation rate increases from 1.0×10^{11} to 2.1×10^{12} (molecules s$^{-1}$). This increase results in enhanced O$_3$ oxidation of NO and subsequently a larger Δ17O values in NO$_x$. When the initial amount of NO$_2$ is increased at a fixed O$_2$ pressure, the O$_3$ formation rate is constant but the exchange of O-atom with NO$_2$ increases, which reduces the Δ17O. It is therefore clear that when the original reservoir of NO$_2$ is large, any effect introduced by the O$_3$ oxidation step would be relatively small compared to the case when the NO$_2$ reservoir is smaller. The effect of each of these reactions can be explored by the Kintecus model quantitatively.

3.3.1 Sensitivity tests for exchange reactions

A number of simulations for evaluating the sensitivity of the exchange reactions were carried out to test the above-mentioned isotopic dilution via Reaction (R7a) (NO$_2$+ O → NO + O$_2$), Reaction (R7b) (NO + O + M → NO$_2$), Reaction (R9) (QNO + O ↔ ONO + Q), and Reaction (R10) (NO+O↔NO+Q) (Table 6). This was accomplished by alternatively reducing the rate constant of one of the above reactions to 10^{-6} of its value (Table 4), which essentially eliminates it from the reaction scheme. The relative importance of the exchange reactions was evaluated using two cases of NO$_x$/O$_2$ ratios: Case 1: 20 µmol/500 torr compared to 237 µmol/500 torr (for amount variation) and Case 2: 20 µmol/500 torr compared to 20 µmol/50 torr (for pressure variation). The exchange reactions did have a major impact on the simulated isotopic values as expected. For example, when all four isotope exchange mechanisms (Reactions R7a, R7b, R9, and R10) were eliminated the NO$_x$Δ17O value stabilized at 68.0‰, 48.0‰, and 48.0‰ for the 20 µmol/50 torr and 237 µmol/500 torr and 20 µmol/500 torr cases respectively. These values are in good agreement with the O$_3$Δ17O values obtained at these two pressures (Tables 1 and 2) multiplied by 3/2 required by the terminal atom transfer assumption. In other words, in the absence of NO$_x$ exchange reactions the δ18O and Δ17O values in the product NO$_x$ are the same as that of the terminal O atoms in O$_3$.

The simulations that compared the amount effect (constant $P = 500$ torr) provided insight into which exchange reactions were important under changing NO$_x$ mixing ratios (Table 6). For comparison, a Δ17O dilution parameter was introduced here which is defined as: 1- (Δ17O$_{eq}$ / 48‰), where Δ17O$_{eq}$ is the Δ17O value of NO$_x$ at equilibrium for simulations that had one or more of the exchange pathways removed and 48‰ is the expected NO$_x$ value when all exchanges were removed. For the 20µmol case, the Δ17O dilutions were, 0.07 (Reaction R7a off), 0.12 (Reaction R7b off), 0.09 (Reaction R9 off), 0.07 (Reaction R10 off), and 0.12 when all exchanges were included (Table 6). This indicates that under these conditions no single exchange reaction is dominant and in concert they induce only about a 10% reduction relative to NO$_x$ equilibrium value (48‰). In contrast, for the 237 µmol and 500 torr case the Δ17O dilutions were much higher (0.54 ± 0.075) and fell into two groups. The first group included all exchange reactions included
(0.62), Reaction (R7b) excluded (0.62) and Reaction (R9) excluded (0.59). This group was significantly different compared to the second group when Reaction (R7a) was excluded (0.46) or when R10 was excluded (0.50). A lower dilution value in a given simulation means that the system is sensitive to that exchange reaction; removing that reaction results in significantly less exchange. The above values mean two things: there is more overall exchange in the 237 µmol compared to 20 µmol simulation and it is disproportionately caused by the Reaction (R7a) and Reaction (R10). Elevated isotope exchange in the Reaction (R7a) and Reaction (R10) in the 237 µmol simulation occurred for two reasons. First, the steady state [O] was ten times higher relative to the 20 µmol simulation occurred for two reasons. First, the steady state [O] was ten times higher relative to the 20 µmol simulation compared to 20 µmol simulation and it is disproportionately caused by the Reaction (R7a) and Reaction (R10). Elevated isotope exchange in the Reaction (R7a) and Reaction (R10) in the 237 µmol simulation occurred for two reasons. First, the steady state [O] was ten times higher relative to the 20 µmol simulation compared to 20 µmol simulation and it is disproportionately caused by the Reaction (R7a) and Reaction (R10).

The pressure comparison (50 versus 500 torr at 20 µmol NO₂) also showed that only two of the exchange pathways were important, but their effects were not the same as in the amount comparison (Table 6). In the 50 torr case the Δ¹⁷O dilutions (1-Δ¹⁷Oeq/68‰) averaged 0.86 ± 0.11, which were much higher than the high pressure case that averaged 0.095 ± 0.026. The R7b (off), R9 (off) and all exchange (on) simulations had the same Δ¹⁷O dilution of 0.92, while Reaction (R7a) (off) was slightly lower (0.87) and Reaction (R10) (off) having 0.66 value was the most sensitive reaction. This was traced back to the dependence of Reaction (R7b) on [M] which is ten times lower at 50 torr relative to 500 torr. This limited NO₂ production via Reaction (R7b) and resulted in NO/NO₂ ratio of 6.3 at 50 torr compared to 0.86 at 500 torr. The roughly ten fold higher concentration of NO then leads to accelerated oxygen exchange via Reaction (R10). Since pressure already limits ability of Reaction (R7b) to produce NO₂, eliminating it from the exchange scheme had no effect. Thus we conclude that Δ¹⁷O in the simulations can be explained by exchange reactions whose relative importance shifts depending on production of NOₓ and odd oxygen as mixing ratio and pressure change.

3.3.2 Model performance and r-values

The excellent agreement between the model predictions and the observations allows us to constrain the variation in the r¹⁷ and r¹⁸ rate coefficients as a function of the O₂ (total) pressure (Table 5 and Fig. 7). There is decrease in both these factors with increasing pressure consistent with the observed decrease in MIF of O₃ at high pressure (Thiemens and Jackson, 1990). The decrease for r¹⁸ was from 1.450 to 1.330 for a pressure increase from 50 to 750 torr. We can speculate in the light of Gaó-Marcus model that the main reason for this decrease is an increase in collision frequency which lowers the life time of the transition state of the asymmetrical O₃ isomorpher (known to be the factor responsible for MIF). This factor causes large change in asymmetrical O₃ abundance as expected. For example, at 50 torr the modeled O₃ δ¹⁸O values were: 150‰e (asymm) and 85‰e (symm) whereas at 750 torr the values were 93‰e (asymm) and 85‰e (symm). Correspondingly, the modeled Δ¹⁷O value of bulk O₃ changes from 44.5 to 30.6‰. Applying these adjusted r¹⁷ and r¹⁸ rate coefficients the best fit line between observed and model predicted values (Fig. 6) was improved yielding very similar slopes of 1.03 (NOₓ) and 0.95 (O₃). This provides an additional validity to the proposed transfer mechanism.

The model also does a good job of predicting NOₓδ¹⁸O values for low NOₓ mixing ratios, but not as well when mixing ratios increase. In the constant amount experiments (set 2), the model (y) versus observed (x) best fit, when forced through zero, was y = 1.01x (r² = 0.96) (Table 1 and Table 2) indicating excellent agreement between the kinetic model’s and experiment’s NOₓδ¹⁸O values when NOₓ was at 20 µmol. In the constant pressure experiments (set 2), however, the model (y) versus observed (x) best fit was y = 0.75x + 13 (r² = 0.96). Additionally, in the constant pressure experiments there is a strong negative correlation between observed NOₓΔ¹⁷O values and the difference between the “light” model’s predicted NOₓδ¹⁸O value and the observed NOₓ value. In other words, as the NOₓ mixing ratio became smaller, the “light” model NOₓδ¹⁸O values approach the observed values, whereas they diverge as the mixing ratio increases. Any KIE occurring during the reactions in the dark phase, like NO + O₂ or NO–NO₂ isotope exchange can be ruled out as the cause of this divergence because the correlation exists without the former, and the latter simply alters isotope distribution between NO₂ and NO without changing the bulk NOₓ isotope composition. This suggests that the equilibrium values used in the O + NOₓ exchange reactions may be incorrect and the divergent isotope effect becomes more obvious when isotope exchange becomes more important at the high NO₂ mixing ratios. The 13‰ offset generated by the model may reflect the fractionation factor associated with such an exchange. Regardless, it appears from both data sets that as the NO₂ mixing ratio approaches ambient levels (much less than ppm), the model does an excellent job of predicting the observed NOₓδ¹⁸O values.

3.3.3 Estimation of uncertainty in r-values

We note that the rate coefficient ratios r¹⁷ and r¹⁸ of ozone formation are inferred based on trial and error method and are subject to some uncertainty. The initial choice is based on fitting literature data on pressure variation of δ-values during ozone formation. These values are then slightly modified to fit the pressure variation data of NOₓ obtained in the present experiment.

The pressure variation data as available in literature (summarized in Mauersberger et al., 2005) have large scatter not only due to experimental limitations but also due to the fact...
that they combine data from various methods and sources. As discussed, to obtain a consistent set of pressure variation data in digital form that can be used for our purpose we fitted a smooth curve through the points and read out the \(\delta \)-values at each of the eleven pressures (50, 75, 100, 150, 200, 300, 400, 500, 600, 700 and 750 torr). Based on the smoothing error and the dispersion associated with the data points we estimate that each of the ozone \(\delta \)-values should have an uncertainty of about \(\pm 4 \%\). Since we are using these \(\delta \)-values to derive the \(r \)-values which, in turn, are used to fit the observed experimental \(\delta \)-values of \(\text{NO}_x \) the overall uncertainty should be reflected in the goodness of fit of the \(\text{NO}_x \) \(\delta \)-values. The model \(\delta \)-values do differ from the observed ones; the maximum absolute difference in both \(\delta \)-values is about \(8 \%\) and the maximum absolute difference in the \(\Delta^{17} \text{O} \) values is \(4.9 \%\) (see Table 2). Therefore, the uncertainty in the ozone \(\delta \)-values gets reflected in the \(\text{NO}_x \) \(\delta \)-values. Based on these considerations, we assign error of \(4 \%\) (1\sigma) in each of the fitted ozone \(\delta \)-values as a reasonable estimate of the error. To determine the corresponding uncertainty in each of the eleven \(r \)-values, the Kintecus program was varied in order to match the high and low limit of ozone \(\delta \)-values in each case. A reasonable estimate of the total error in each \(r \)-value can then be obtained by using half of the difference between the corresponding high and low \(r \)-values. As an example, at 200 torr pressure the \(\Delta^{17} \text{O} \) and \(\delta^{18} \text{O} \) values (in \%\) are 95.3 and 105.4 with fitted values of 95.2 and 105.6 corresponding to \(r^{17} \) and \(r^{18} \) values of 1.282 and 1.382. Assigning error of \(4 \%\) in both \(\delta^{17} \text{O} \) and \(\delta^{18} \text{O} \) values we obtain uncertainty of 0.012 in each of the two \(r \)-values i.e., \(1.282 \pm 0.012 \) and \(1.382 \pm 0.012 \) (Fig. 7). For comparison, the difference between the \(r^{18} \) values corresponding to 50 and 750 torr is: 1.450 – 1.335 = 0.115. So the uncertainty in \(r^{18} \) value in this case is of the order of 10% of the total variation.

3.4 Atmospheric applications

The present model can be used to predict the expected oxygen isotope composition of \(\text{NO}_x \) in the atmosphere when it is generated by only \(\text{NO}_x - \text{O}_3 \) chemistry. The isotopologue rate constants are the crucial input to the model and they have been shown to be independent of \(\text{NO}_x / \text{O}_2 \) mixing ratios and accurately predict the resulting \(\delta^{18} \text{O} \) and \(\Delta^{17} \text{O} \) values in \(\text{NO}_x \). The photolysis model (only the light reactions) was run for a range of \(\text{NO}_x \) mixing ratios typical of the troposphere, which can widely vary depending on the proximity to \(\text{NO}_x \) sources; urban regions are typically 10’s of ppbv, while remote ocean regions can be below 10 pptv. For standard temperature and pressure and typical \(\text{NO}_2 \) \(j \) coefficient (0.007), the \(\text{NO}_x - \text{O}_3 \) only isotope equilibrium model predicts the nearly same steady state \(\text{NO}_2 \) \(\Delta^{17} \text{O} \) and \(\delta^{18} \text{O} \) values of \(45 \pm 0.2 \%\) and \(117 \pm 5 \%\) respectively (relative to VS-MOW), regardless \(\text{NO}_x \) mixing ratios (model runs ranged from 10 pptv to 10 ppbv). This \(\text{NO}_2 \delta^{18} \text{O} \) value was based on the model prediction of 92 \pm 5\% enrichment relative to the reactant \(\text{O}_2 \delta^{18} \text{O} \) value, which in the case of the tropospheric \(\text{O}_2 \) is 23\% relative to VS-MOW. This suggests that, to a first approximation, the \(\text{NO}_x - \text{O}_3 \) equilibrium value used in atmospheric nitrate \(\Delta^{17} \text{O} \) models can be initialized using a single \(\text{NO}_2 \Delta^{17} \text{O} \) value of 45\%, regardless of local \(\text{NO}_x \) concentrations. This \(\Delta^{17} \text{O} \) value is 5\% higher than a previous 1-D model (Lyons, 2001), which differs significantly in its estimation of the \(\text{O}_3 \) terminal \(\text{O} \) atom isotope enrichment (78\%) compared to the present model (48\%) at 750 torr. This arises primarily because Lyons assumes that the symmetric / asymmetric branching ratio is fixed, while ours vary with pressure (Janssen, 2005; Table 5). If the higher \(\text{O}_3 \) \(\Delta^{17} \text{O} \) value (Lyons, 2001) is assumed in our model the predicted \(\text{NO}_x \Delta^{17} \text{O} \) value would be \(\sim 70 \%\), significantly higher than the observed value. In addition, it is unclear why, in that model, there was decrease in the \(\text{NO}_x \Delta^{17} \text{O} \) values with decreasing altitude in the troposphere. We infer that this was due to an assumed isotopic exchange between \(\text{NO}_2 \) and \(\text{H}_2\text{O} \), a process not considered in our model.

Transport of stratospheric \(\text{O}_3 \) could potentially alter tropospheric \(\text{NO}_x - \text{O}_3 \) isotope equilibrium \(\delta / \Delta \) values. Remote tropospheric \(\text{O}_3 \) mixing ratios are often dominated by cross tropopause mixing of stratospheric \(\text{O}_3 \). This \(\text{O}_3 \) would have an isotopic composition that reflects the stratospheric pressure and temperature conditions where it was formed and would alter tropospheric \(\text{NO}_2 \Delta^{17} \text{O} \) values since the \(\text{NO}_x - \text{O}_3 \) isotope equilibrium depends on the isotopic composition of the \(\text{O}_3 \). This influence, however, is expected to be minor because while the chemical lifetime of \(\text{O}_3 \) in a clean troposphere may be months, the isotopic lifetime would be much less. Ozone photolysis and reformation in the troposphere would reset its isotopic composition, and this recycling rate will be limited by \(\text{O}_3 \) photolysis lifetime of \(\tau = 1 / j_{\text{O}_3} \). Ozone \(j \) coefficients in the troposphere vary depending on the overhead total \(\text{O}_3 \) column, latitude, time of day, and other phenomena that change photon fluxes, but have a daily average \(\sim 1 \times 10^{-4} \text{ s}^{-1} \) resulting in \(\tau \sim 3 \hour \). Thus, in much less than a day any stratospheric \(\text{O}_3 \) transported to the troposphere would have its isotope composition reset to values based on T-P of the air mass in which it photolyzes and reforms. However, in regions where stratospheric \(\text{O}_3 \) mixing is high but its photolysis rate is low, such as polar winters, stratospheric \(\text{O}_3 \) may still influence \(\text{NO}_x \)’s isotopic composition. Yet, minimal sunlight in polar winters would also inhibit \(\text{NO}_x \) recycling itself (discussed below), so the net isotopic effect is unclear and would require more detailed 3D chemical transport modeling.

It is emphasized that the model predicted \(\delta^{18} \text{O} \) and \(\Delta^{17} \text{O} \) values are those for \(\text{NO}_2 \) produced by \(\text{NO}_x - \text{O}_3 \) isotope equilibrium only and would not likely represent the actual tropospheric \(\text{NO}_2 \) values. Under low \(\text{NO}_x \) conditions, hydroperoxy and organo-peroxy radicals are the main oxidants that convert \(\text{NO} \) into \(\text{NO}_2 \). These radicals form mainly when \(\text{H} \) and organic radicals (\(R \)) react with air \(\text{O}_2 \), which has a \(\Delta^{17} \text{O} \) value of about zero. If one assumes that the product peroxo

www.atmos-chem-phys.net/14/4935/2014/ Atmos. Chem. Phys., 14, 4935–4953, 2014
Figure 8. Time variation of modeled NO\textsubscript{x} isotope ratios to show timescale to NO\textsubscript{x}–O\textsubscript{3} isotopic equilibrium for different initial concentrations. The curves denote \(\delta^{18}\text{O}\) and \(\Delta^{17}\text{O}\) values of NO\textsubscript{x} (relative to tank O\textsubscript{3} in ‰). One set denotes the case of low ozone and low NO\textsubscript{x}: 5 ppbv O\textsubscript{3}, 30 pptv NO\textsubscript{x}, and a NO\textsubscript{2} \textit{j}-coefficient of 0.00033 s−1 and demonstrates that under these conditions equilibrium occurs after 9 h. The second set denotes the case of high ozone and high NO\textsubscript{x}: 50 ppbv O\textsubscript{3} and 10 ppbv NO\textsubscript{x} (typical of urban and suburban pollutant levels) and a NO\textsubscript{2} \textit{j}-coefficient of 0.007 s−1. In this case, the equilibrium is reached in about 60 min.

radicals also have near zero \(\Delta^{17}\text{O}\) values and that the NO oxidation process itself follows mass dependent isotope fractionation rules, then the NO\textsubscript{2} produced during peroxo radical oxidation of NO should have a \(\Delta^{17}\text{O}\) value of zero. Therefore, the final \(\Delta^{17}\text{O}\) (and \(\delta^{18}\text{O}\)) value of tropospheric NO\textsubscript{2} will depend on the proportion of NO oxidized by peroxo radicals relative to oxidation by O\textsubscript{3} (Michalski et al., 2003; Morin et al., 2008). This dilution effect is incorporated into isotope mass balance models used to predict atmospheric nitrate \(\Delta^{17}\text{O}\) values (Michalski et al., 2003; Morin et al., 2008; Alexander et al., 2009). However, these models require an estimate of the \(\Delta^{17}\text{O}\) value of NO\textsubscript{2} generated by NO\textsubscript{x}–O\textsubscript{3} equilibrium, which has a value of \(\sim 45\%\) as shown here.

While the NO\textsubscript{x}–O\textsubscript{3} isotopic equilibrium \(\delta^{18}\text{O}\) and \(\Delta^{17}\text{O}\) values are nearly the same regardless of NO\textsubscript{x} mixing ratios (at ppbv levels), the timescale to reach isotopic equilibrium can be significantly different (Fig. 8). Simulations run at 20 ppbv to 10 pptv NO\textsubscript{x} predict NO\textsubscript{x}–O\textsubscript{3} equilibrium times of hours to several days. These longer equilibrium times predicted by the present model are gross overestimations because at pptv mixing ratios in a NO\textsubscript{x} only system (no organics) the model shows that [NO] \(\sim [\text{O}_3]\) as per R5 (Pandis and Seinfeld, 1998). Thus in our model using pptv levels of NO\textsubscript{x}, the result is pptv levels of O\textsubscript{3}, which results in significantly slower isotope recycling rates, mainly via slow NO oxidation by O\textsubscript{3}. In the real world, even in remote regions of the troposphere, O\textsubscript{3} mixing ratios below 10 ppbv are rare, and they are typically 5 times higher than NO\textsubscript{x} (Crutzen and Lelieveld, 2001; Faloona et al., 2000; Jaegle et al., 2000; Liu et al., 1987), which would greatly accelerate the equilibrium process. Simulations initialized to urban to rural O\textsubscript{3} and NO\textsubscript{x} mixing (10–50 ppbv and 1–10 ppbv, respectively) equilibrate in less than an hour or two (Fig. 8). However, even at these high O\textsubscript{3} mixing ratios the timescale to equilibrium can be sufficiently slow such that NO\textsubscript{x}–O\textsubscript{3} equilibrium may not be reached and may manifest itself in the isotopes of atmospheric NO\textsubscript{3}\(^{−}\) if the NO\textsubscript{x}–O\textsubscript{3} equilibrium is slower than conversion to HNO\textsubscript{3}. The lifetime for daytime conversion of NO\textsubscript{2} into HNO\textsubscript{3} by reaction by hydroxyl radical at typical OH mixing ratios \((1 \times 10^9 \text{ molecules/cm}^3)\) is \(\tau = 1/[\text{OH}].24 \times 10^{-11} \text{cm}^3/\text{molecules s}\), which is on the order of 10 h, so there may be situations in remote regions where NO\textsubscript{x}–O\textsubscript{3} only chemistry does not reach isotope equilibrium before the NO\textsubscript{x} is converted to nitric acid. For example, when initializing our model under conditions observed by Morin et al. (2007) (i.e., 5 ppbv O\textsubscript{3}, 20 pptv NO\textsubscript{x} (assumed), and NO\textsubscript{2} \textit{j}-coefficients of \(1.7 \times 10^{-3}\) (29 March, noon) or \(5.6 \times 10^{-4}\) (29 March, 6 p.m.)), it requires 4 h before NO\textsubscript{x}–O\textsubscript{3} isotopic equilibrium is achieved. The lack of NO\textsubscript{x}–O\textsubscript{3} isotope equilibrium would be exacerbated with approaching polar winters and nights when NO\textsubscript{2} becomes small since this rate ultimately controls the isotope recycling rate in the NO\textsubscript{x}–O\textsubscript{3}. The NO\textsubscript{x} lifetime at night is controlled by NO\textsubscript{x}/N\textsubscript{2}O\textsubscript{5} chemistry that in turn depends mainly on aerosol types and their surface area, but has value similar to that of the OH reaction. Under these conditions NO\textsubscript{x}–O\textsubscript{3} equilibrium may be sufficiently slow relative to HNO\textsubscript{3} production to impact the \(\Delta^{17}\text{O}\) values of NO\textsubscript{3}\(^{−}\). For example, the NO\textsubscript{2} \textit{j} coefficient for Alert, Nunavut, Canada \((82°30'\text{N}, 62°19'\text{W})\) on 7 October at noon is 0.00033 s−1 and using the same O\textsubscript{3} mixing ratios as observed by Morin et al. (2008) the resulting time to equilibrium is roughly 9 h. Given there are only \(\sim 5\) h of daylight at this time of year at this latitude, daytime NO\textsubscript{x}–O\textsubscript{3} equilibrium is not likely to be achieved before there is some nighttime conversion of NO\textsubscript{x} into HNO\textsubscript{3}. Therefore, we predict that there should be significantly lower NO\textsubscript{x}\(\delta^{18}\text{O}\) and \(\Delta^{17}\text{O}\) values in polar regions, especially those that have high winter NO\textsubscript{x} emissions relative to NO\textsubscript{x}/N\textsubscript{2}O\textsubscript{5} transport (mid latitudes or the stratosphere) where NO\textsubscript{x}–O\textsubscript{3} equilibrium would have been complete. However, this prediction of lower NO\textsubscript{x} (NO\textsubscript{3}\(^{−}\)) \(\delta^{18}\text{O}/\Delta^{17}\text{O}\) values in polar winters may not be realized in observations because of the possibility of dark NO\textsubscript{3} oxidation by isotopically heavy stratospheric O\textsubscript{3} (as mentioned above), the influx of stratospherically derived equilibrated NO\textsubscript{x}, and because the NO\textsubscript{3}\(^{−}\) \(\Delta^{17}\text{O}\) values are also controlled by N\textsubscript{2}O\textsubscript{5}, NO\textsubscript{3}, OH and BrO oxidation pathways. Nevertheless, this does suggest that NO\textsubscript{3}\(^{−}\) isotopes may be useful for delineating between local and stratospheric NO\textsubscript{3} oxidation. Likewise, we predict that NO\textsubscript{3}\(^{−}\) produced by nighttime NO\textsubscript{x} emissions would have lower NO\textsubscript{x}\(\delta^{18}\text{O}\) and \(\Delta^{17}\text{O}\) values relative to daytime and result in lower \(\delta^{18}\text{O}\) and \(\Delta^{17}\text{O}\) values in atmospheric NO\textsubscript{3}\(^{−}\). This may be detectable by rapid
We would like to thank the National Science Foundation for supporting this research (NSF-AGS 0856274). S. K. Bhattacharya thanks Purdue University for facility to carry out the experiments. We thank James Ianni who provided the Kintecus program to do the model simulations. We thank Aaron Wiegel for many constructive comments and advice which helped improve the manuscript. We thank George Ma for help in the diagrams. The calculations and manuscript preparation were done while SKB was a visiting Fellow at Academia Sinica, Taiwan.

Acknowledgements. We would like to thank the National Science Foundation for supporting this research (NSF-AGS 0856274). S. K. Bhattacharya thanks Purdue University for facility to carry out the experiments. We thank James Ianni who provided the Kintecus program to do the model simulations. We thank Aaron Wiegel for many constructive comments and advice which helped improve the manuscript. We thank George Ma for help in the diagrams. The calculations and manuscript preparation were done while SKB was a visiting Fellow at Academia Sinica, Taiwan.

Edited by: T. Röckmann

References

www.atmos-chem-phys.net/14/4935/2014/

Vandenende, D. and Stolte, S.: The influence of the orientation of the NO molecule upon the chemi-luminescent reaction \(\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \), Chem. Phys., 89, 121–139, 1984.