Processing of biomass-burning aerosol in the eastern Mediterranean during summertime

A. Bougiatioti1,2, I. Stavroulas3, E. Kostenidou4, P. Zarmpas3, C. Theodosi3, G. Kouvarakis3, F. Canonaco5, A. S. H. Prévôt5, A. Nenes1,4,6, S. N. Pandis4,7, and N. Mihalopoulos3,4,8

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
2National Technical University of Athens, Laser Remote Sensing Laboratory, Zografou, Greece
3Environmental Chemical Processes Laboratory, University of Crete, 71003 Crete, Greece
4Institute of Chemical Engineering Sciences (ICE-HT), FORTH, Patras, Greece
5Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
6School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
7Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
8Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, Athens, Greece

Correspondence to: A. Bougiatioti (kbougiatioti@gmail.com)

Received: 29 August 2013 – Published in Atmos. Chem. Phys. Discuss.: 9 October 2013
Revised: 12 March 2014 – Accepted: 17 March 2014 – Published: 14 May 2014

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during nighttime. The chemical composition of the particulate matter was studied by different high-temporal-resolution instruments, including an aerosol chemical speciation monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass-burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC (black carbon) measurements and positive matrix factorization (PMF) analysis of the ACSM organic mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS (aerosol mass spectrometry) signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during periods with significant fire influence.

1 Introduction

Organic species represent a significant and often major mass fraction of submicron aerosol. At continental midlatitudes, organic material contributes ~20–50 % of the total fine particulate mass while in tropical forested areas this contribution can be as high as 90 % (Kanakidou et al., 2000; Zhang et al., 2007). During the last few years, factor analysis of measured organic mass spectra from aerosol mass spectrometry (AMS) data has enabled the deconvolution of organic aerosol (OA) to different components based on composition (Zhang et al., 2011). This has provided valuable insights on the source and transformation processes of OA in the atmosphere (Lanz et al., 2008, 2010; Hildebrandt et al., 2010, 2011; Cubison et al., 2011; Aiken et al., 2011; He et al., 2011; Ulbrich et al., 2009). Different components exhibit distinct mass spectra, with the two most common ones being the hydrocarbon-like OA (HOA) and oxygenated OA (OOA) (Zhang et al., 2007). In some cases the OOA component is further resolved into two subtypes that have different degrees of volatility, namely the low-volatility OOA (LV-OOA) and semivolatile OOA...
markers; it is unclear whether commonly used tracers persist long enough.

The obtained CE for sulfate certainly includes the relative contribution of sulfate (0.25). The value of 0.25 as the recommended collection efficiency (CE) of 0.5 for all 

This study presents high-temporal-resolution measurements in a remote background site in the eastern Mediterranean during late summer (August–September 2012). With the concurrent use of an aerosol chemical speciation monitor (ACSM, Aerodyne Inc.) and a seven-wavelength aethalometer we identified and studied different biomass-burning-influenced air masses that arrived in the area. The measurements are analyzed to gain insights into the atmospheric processing of BBOA.

2 Experimental methods

2.1 Sampling site and period

Measurements took place at the Finokalia station (35°32′N, 25°67′E; http://finokalia.chemistry.uoc.gr) of the University of Crete, which is part of the Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS). A detailed description of the site can be found in Mihalopoulos et al. (1997) and Sciare et al. (2003). We focus on periods of intense biomass-burning events that occurred at the Greek islands of Chios, Euboea and Andros, one along the Dalmatian Coast of Croatia that impacted a majority of the Balkan region and one in Sicily. All events took place during August and September of 2012. Air mass origin, trajectory and plume arrival time were estimated by HYSPLIT back-trajectory analysis (www.arl.noaa.gov/ready/hysplit4.html). Locations for each fire are shown in Fig. 1 together with a MODIS image of the Chios fire.

2.2 Instruments and methods

High-temporal-resolution measurements were performed with an Aerodyne Research ACSM (Ng et al., 2011a), which measures aerosol mass and chemical composition (ammonium, sulfate, nitrate, chloride and organics) of nonrefractory submicron aerosol particles in real time. The ACSM is designed and built around the same technology as the AMS, in which an aerodynamic particle focusing lens is combined with particle flash vaporization in high vacuum, hard electron impact ionization and final detection of the resulting ions with a commercial quadrupole mass spectrometer. During the measurement period ambient air was drawn into the ACSM by a PM10 aerosol inlet without prior drying. The ACSM particle lens focuses submicron aerosol of ~40–1000 nm aerodynamic diameter. The PM10 inlet system removes particles that could cause problems for the ACSM inlet (e.g., sea salt, which would cause clogging of the pin hole). The corresponding measurements had a temporal resolution of 30 min. Mass concentrations are calculated with the recommended collection efficiency (CE) of 0.5 for all constituents, apart from sulfate (0.25). The value of 0.25 as CE for sulfate was based on concurrent PM1 filter analysis for a time period of 4 months (Fig. S2.2 in the Supplement). The obtained CE for sulfate certainly includes the relative
ionization efficiency (RIE) of sulfate, which is apparently different from the standard RIE of 1.15 proposed by Ng et al. (2011). The resulting concentrations were compared to those from filter measurements and are discussed in subsequent sections and the Supplement (Sect. S2).

Black-carbon (BC) absorption measurements were conducted with a seven-wavelength aethalometer (Magee Scientific, AE31). Ambient air was drawn into the aethalometer by the same PM$_{10}$ aerosol inlet as mentioned above, but after passing through a diffusional silica dryer. Samples were obtained every 5 min and were subsequently averaged to 30 min in order to match with the ACSM time intervals.

During the whole measurement period daily PM$_{10}$ filter samples were collected on precombusted quartz fiber filters. Filters were pre- and post-weighted using a five-digit microbalance (KERN ABT 120-5DM). Samples were analyzed for organic and elemental carbon using an OC/EC analyzer (SUNSET Laboratory Inc.) as well as for water-soluble ions after extraction in ultrasonic bath with nanopure water. The solutions obtained were analyzed by ion chromatography (IC) for anions (Cl$^-$, Br$^-$, NO$_3^-$ (nitrate), SO$_4^{2-}$ (sulfate), C$_2$O$_4^{2-}$ (oxalate)) and cations (K$^+$, Na$^+$, NH$_4^+$, Mg$^{2+}$, Ca$^{2+}$) using the procedure described by Bardouki et al. (2003). Results for organic carbon (OC), sulfate, ammonium and nitrate were compared to ACSM-derived concentrations. As the ACSM provides organic matter (OM) concentrations, the filter-derived OM was calculated by multiplying OC concentrations with a time-dependent conversion factor, which is the corresponding ratio of the average organic molecular mass to the carbon mass for the organic aerosol for the same sampling period for each filter (Sect. 3.3). Particle number distribution was monitored using a custom-made scanning mobility particle sizer (SMPS) equipped with a condensation particle counter (CPC; TSI model 3772) in 5 min-time resolution measuring particles from 9 to 850 nm. The SMPS inlet has a built-in Nafion dryer that lowers relative humidity (RH) to $\sim$30%, therefore aerosol can be considered as almost dry. O$_3$ concentrations and meteorological parameters (wind speed and direction, pressure, temperature, relative humidity) were also continuously monitored.

### 2.3 PMF analysis

The measured mass spectra from the ACSM were deconvolved into different components using the positive matrix factorization (PMF) analysis exploiting the multilinear engine (ME-2) algorithm (Paatero and Tapper, 1994; Paatero 1999). The interface for initiating and controlling the multilinear engine algorithm (ME-2, P. Paatero, University of Helsinki), as well as analyzing the results, was developed at the Paul Scherrer Institute (Canonaco et al., 2013) within the software package Igor Pro Version 6.22A (Wavemetrics Inc., Lake Oswego, OR, USA). The interface is intended to facilitate the analysis of the source apportionment of measured data (Ng et al., 2011b). Briefly, PMF uses a least-squares algorithm to minimize the squared difference between mathematically extracted and the measured data, i.e., the residual weighted by the uncertainty. Here, the measurement error of the ACSM represents the uncertainty. The input organics and organics’ error matrices for the analysis are derived automatically from the ACSM data analysis software, using a simple automated procedure (Ulbrich et al., 2009). For ME-2 and PMF the entries in the model solution are fit using a least-squares algorithm that minimizes iteratively the model uncertainty. For the ACSM data analysis the signals at m/z 18 and
3 Results and discussion

3.1 PM$_1$ composition

ACSM sulfate and ammonium concentrations were on average 19 and 15% lower than the corresponding PM$_1$ filter measurements ($R^2 = 0.8$ and 0.68 respectively) (Supplement Fig. S2). These discrepancies can be attributed to errors and fluctuations in the CE of these species, but also to different cutoff points of the sampling devices. Middlebrook et al. (2012) reported that the CE of the AMS species may be influenced by both elevated aerosol acidity and high relative humidity. Using the parameterization proposed in the aforementioned publication for the effect of high aerosol acidity, we calculated the NH$_4$/NH$_4$$_{\text{neutr}}$ to be equal to 0.803 ($R^2 = 0.67$), where NH$_4$$_{\text{neutr}}$ represents the theoretical ammonium concentration needed to neutralize the inorganic anion mass concentrations. Similar acidic behavior of the aerosol has been observed for the site in previous measurements (Hildebrandt et al., 2010). Organic matter concentrations calculated from OC analysis (POM=OC*OM/OC, as derived from our dataset, using the estimate of Aiken et al. (2008), Sect. 3.3) and organic concentrations from the ACSM are in good agreement with an average slope of 0.91 and $R^2$ of 0.7. Slightly higher OC concentrations from filter analysis may be due to the adsorption of gaseous organic compounds on the precombusted quartz-fiber filters. The time series of the high-temporal-resolution measurements is shown in Fig. 2a.

We compared the PM$_1$ mass concentrations by adding the ACSM and BC masses with the mass estimated using the SMPS volume (Fig. 2b) and a total density equal to

$$\rho = \left[ \frac{x_{\text{a/s}}}{\rho_{\text{a/s}}} + \frac{x_{\text{org}}}{\rho_{\text{org}}} \right]^{-1},$$

where $x_{\text{a/s}}$ is the mass fraction of ammonium sulfate, $x_{\text{org}}$ is the mass fraction of the organics, $\rho_{\text{a/s}}$ is the density of ammonium sulfate (1.77 g cm$^{-3}$) and using an average organic aerosol density $\rho_{\text{org}}$ equal to 1.35 g cm$^{-3}$ as determined by Lee et al. (2010a) for the same site during the summer of 2008. The ACSM concentrations for ammonium and sulfate were corrected based on the filter concentrations. The mass derived from gravimetric measurements of the concurrent daily PM$_1$ filters is also given. The ACSM+BC mass concentrations have an average value of 9.2 ± 4.8 µg m$^{-3}$, which is in good agreement with the 10.9 ± 4.2 µg m$^{-3}$ calculated from the SMPS. The difference may be attributed to components that cannot be measured by the ACSM.

The ACSM measurements were then divided into those corresponding to fire events and the rest, based on BC measurements from the aethalometer, the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) analysis and available satellite pictures. Figure 2c and d represent the relative contribution of each constituent to the PM$_1$ mass (sum of the derived constituents) during nonfire and fire events, respectively. During fire events, the contribution of organics and BC increase substantially while that of sulfate diminishes.

3.2 Identification of biomass-burning events

Biomass-burning events were identified by an enhanced BC concentration (Fig. 3). We assume that 250 ng m$^{-3}$ corresponds to the background concentration for Finokalia during periods where the site is not affected by biomass burning. This limit is consistent with the 213 ± 34 ng m$^{-3}$ found by Cristofanelli et al. (2013) in Mt. Cimone, Italy, and comparable to average background levels reported for European, continental background sites (Van Dingenen et al., 2005; Pataud et al., 2004). The average BC concentration during the measurement period was of 387 ± 149 ng m$^{-3}$, with lower values being close to the background value (250 ng m$^{-3}$). Possible biomass-burning incidents are identified by having BC concentrations at least 2.5 times higher than the Finokalia background (higher than 625 ng m$^{-3}$). This is approximately equivalent to two standard deviations above the average background value. As a second step, locations of possible fire events were identified by FIRMS. The exact location and plume age was calculated by the HYSPLIT back-trajectory analysis.

Five distinct wildfire events affecting the site were identified using the approach described above during the sampling period: a large fire that burned most of the island of Chios (19–21 August); the extensive wildfire at the Dalmatian Coast in Croatia and southern Bosnia–Herzegovina which resulted in smoke plumes that spread all across the Balkans during the period 28–30 August; the smaller fires on the islands of Euboea on 5 September and Andros on 13 September (back trajectories and MODIS images for each can be found in the Supplement); and a fire that took place in the island of Sicily during the period 18–21 September and influenced the site on 21 September.

Based on the back-trajectory analysis and the estimated travel time of the fire plumes, most of the plumes arrived at the site in the early morning hours. While this timing could be coincidental, it is possible that some of these plumes were aloft (above the nighttime mixing layer) and they were mixed downwards reaching the site in the morning.

The above periods were characterized by strong biomass-burning ACSM tracers at $m/z$ 60 and 73 (Fig. 3a). The signal was considerably weaker for the Sicily fire emissions that traveled the longest before reaching Finokalia. Apart from the ACSM tracers, we also performed source apportionment of BC, based on the approach of Sandradewi et al. (2008). Using an absorption exponent of 1.1 for fossil fuel burning and the average value obtained in the study of 1.86 for pure
Fig. 2. (a) Time series of concentrations of major PM$_1$ species; (b) comparison of ACSM-derived, SMPS-derived and filter-derived mass time series; PM$_1$ composition during (c) nonfire periods and (d) fire events.
Fig. 3. (a) The time series of the biomass tracer loadings of m/z 60, m/z 73 and black carbon; the shaded areas represent the identified fire events and locations. (b) Estimated source apportionment of BC concentrations based on light-absorption measurements.

wood-burning conditions, we calculated the contribution of these components to the total BC concentrations. The time series of each component is presented in Fig. 3b, where it can be seen that the identified burning events are also depicted by the enhanced contribution of wood-burning BC concentrations.

Finally, BC concentrations were also relatively high towards the end of September (25–30 September), with an average concentration of 535 ± 109 ng m⁻³, which is close to 2.5 times higher than the background level for Finokalia. During this period, BC concentrations build up gradually and the ACSM tracers do not reveal any noticeable variability. In addition, FIRMS does not identify any significant events in the area during the period 25–30 September and the contribution of wood-burning BC is also very low. Therefore these high BC levels are attributed to another source not related to a fire event, therefore this period is not included in the biomass-burning analysis.

3.3 Elemental composition of organic aerosol

The ACSM dataset was used to calculate the elemental composition and ratio of organic mass to organic carbon (OM/OC) based on the estimates proposed by Aiken et al. (2008) and Ng et al. (2011c), as follows:

\[
O/C = (3.82 \pm 0.005) f_{44} + (0.0794 \pm 0.007), \\
OM/OC = (1.26 \pm 0.02)O : C + (1.18 \pm 0.001), \\
H/C = (1.01 \pm 0.08) + (6.07 \pm 1.39) f_{43} + \\
(-16.01 \pm 5.34) f_{43}^2,
\]

where \( f_{43} \) and \( f_{44} \) are calculated as \( f_{43} = [m/z 43](\mu g \text{ m}^{-3})/C_{OA} \), and \( f_{44} = [m/z 44](\mu g \text{ m}^{-3})/C_{OA} \) with \( C_{OA} \) being the total OA mass concentration (\( \mu g \text{ m}^{-3} \)). Based on Aiken et al. (2008) the uncertainty in the raw atomic ratio for O/C can be up to 30 %, for H/C 10 %, and for OM/OC 6 %. Biases can also be introduced by the applied fragmentation table. Figure 4 shows the variation of the estimated atomic ratios of O/C and H/C and the mass ratio of OM/OC during the measurement period, averaging every 2 h, as well as \( f_{43} \) vs \( f_{44} \) compared to other studies. According to Herringa et al. (2011) the presence of wood-burning POA and its aging SOA are found at the left edge of the triangle. The O/C ratio varies between 0.5 and 1.3, with a mean value of 0.9, values which are within the observed values of low-volatility and semivolatile OOA (0.3–1.1; Ng et al., 2011c) and dicarboxylic acids (0.4–2.0; Kuwata et al.,
Fig. 4. Time series of atomic ratios of O/C and H/C (a), the variation of the mass ratio of OM/OC (b), and the fractional signals $f_{43}$ and $f_{44}$ of biomass-burning and oxygenated organic aerosol in our study and other studies (c).
2013). For the same region, Hildebrandt et al. (2010a) estimated an O/C of 0.8 for a sunny May period, corresponding to an average $f_{ad}$ of 18.2 %. The higher O/C value found in this study can be attributed to the higher contribution of $f_{ad}$ (23.3 %). The H/C ratio varies in a range of 1.1–1.3, with a mean value of 1.2. The O/C ratio is a proxy for the oxidation state and the photochemical age of organic aerosols (Ng et al., 2011c; Huang et al., 2011) and thus its variability during the measurement period reflects variations in OA age at Finokalia. Combining information from both ratios, for most of the cases, lower O/C coincides with higher H/C and all fire events can be clearly identified in the time series. During the identified fire events both O/C and H/C have average values of 0.8 and 1.3, respectively. These values are consistent with the presence of less oxidized aerosol than the study average.

The average OM/OC was 2.4, which is characteristic of a remote background site such as Finokalia and which is within uncertainty of the value of 2.2 found by Hildebrandt et al. (2010b) and the value of 2.1 used by Sciare et al. (2005) to convert OC to POM for mass reconstruction during the MIONS summer campaign. These very high values of OM/OC reflect the highly oxidized nature of organic Eastern Mediterranean aerosol, which during the middle of the summer is a marker for fresh aerosol (Alfarra et al., 2004; Capes et al., 2008) and thus its variability during the cases, lower O/C coincides with higher H/C and all fire events can be clearly identified in the time series. During the identified fire events both O/C and H/C have average values of 0.8 and 1.3, respectively. These values are consistent with the presence of less oxidized aerosol than the study average.

The three-factor solution correspond to fresh BBOA, an OOA component associated with biomass burning (OOA-BB) and a more oxidized OOA. Figure 5 shows the mass spectra of the three factors and the time series of each factor associated with external reference time series. The BBOA, OOA-BB and OOA accounted on average for 18, 30 and 52 % of the organic mass, respectively. The average diurnal profile of each factor is also depicted in Fig. 5, where the peak of the BBOA factor coincides with arrival times of smoke-influenced air masses during early morning hours. The diurnal profile of OOA-BB shows an increase in the concentrations between 05:00 and 10:00 local time (UTC/GMT +3) due to the arrival of the fire plumes, which causes the larger variability of the OOA-BB levels during this early morning period.

The OOA diurnal profile (which is very similar to the sulfate one) suggests that there is still chemistry and production of both sulfate and OOA near the site and that the corresponding conversion of organic compounds to OOA and sulfur dioxide to sulfate has not been completed. This chemical processing together with vertical exchange processes could explain the observed average variability. A similar diurnal profile has also been reported by Hildebrandt et al. (2010) in an earlier study in the same area during a similar time period, for the more oxidized, identified organic component. The identified factors were also examined for their mass spectra signatures, their correlation with reference mass spectra and also with other characteristic time series that justify their behavior.

The BBOA component had the characteristic markings of biomass-burning aerosol, which are enhanced signals at m/z 60 and 73 probably from levoglucosan and related compounds (Schneider et al., 2006; Cottrell et al., 2008). It also had prominent peaks at $m/z$ 27, 29, 41, 43, 55, 57, 77 and 91 and significant contributions at high m/zs that are indicative of freshly emitted organic aerosol. The m/z 57, which is pronounced in our BBOA mass spectrum, has two possible origins that are biomass-burning relevant, as it can originate from levoglucosan (most probably $C_9H_6O_9^+$), but it is also a typical fragment of saturated hydrocarbon compounds or of long alkyl chains ($C_9H_{18}^+$), therefore it can be a good marker for fresh aerosol (Alfarra et al., 2004; Capes et al., 2008). The fresh BBOA factor in our study had an O/C of 0.2 and an H/C of 1.3, consistent with other observed BBOA (Fig. 4c). The BBOA-factor time series showed good correlation with both the estimated BC coming from wood burning ($R_{\text{pearson}}=0.81$) as well as with nitrate ($R_{\text{pearson}}=0.75$) for the whole measurement period and no correlation with sulfate or ammonium.

3.4 Organic aerosol source apportionment using PMF

The PMF analysis of the ACSM OM mass spectra (MS) acquired during the measurement period was performed investigating solutions using 1–4 factors. The two-factor solution resulted in a mixed processed BBOA profile and an OOA profile. The mixed processed BBOA factor had characteristics of both BBOA, such as signal at m/z 57, 60 and 73, but also of OOA, with pronounced signal at m/z 28 and 44. It correlates well with both BC and nitrate ($R^2 = 0.6$ and 0.74, respectively) but poorly with sulfate. Its diurnal variability coincides mostly with the arrival time of biomass-burning-laden air masses. Its O/C was 0.49 suggesting oxygenated BBOA. When compared to reference mass spectra it correlated relatively well with BBOA ($R_{\text{pearson}} = 0.76$) but mostly with OOA ($R_{\text{pearson}} = 0.97$). In order to separate the mixed behavior of this processed BBOA profile we used the three-factor solution. The PMF solutions with four factors resulted in split factors, without identifying a unique factor profile. The splitting behavior was affirmed by poor correlation with tracer species and by mass spectra that appear also to be split between factors.

The three-factor solution was selected for having good correlation with tracer species while displaying distinct diurnal variation, factors have MS features that compare well to reference mass spectra. The stability of the solution was tested by initializing the algorithm of the analysis from 20 different starting points (“seeds”) and results showed very little variability, with no unexplained mass observed. Similar results were also obtained by rotating the obtained solution of the model using $f_{\text{peak}}$ runs. Details about the PMF for all cases can be found in the Supplement Sect. 4.

The three factors correspond to fresh BBOA, an OOA component associated with biomass burning (OOA-BB) and a more oxidized OOA. Figure 5 shows the mass spectra of the three factors and the time series of each factor associated with external reference time series. The BBOA, OOA-BB and OOA accounted on average for 18, 30 and 52 % of the organic mass, respectively. The average diurnal profile of each factor is also depicted in Fig. 5, where the peak of the BBOA factor coincides with arrival times of smoke-influenced air masses during early morning hours. The diurnal profile of OOA-BB shows an increase in the concentrations between 05:00 and 10:00 local time (UTC/GMT +3) due to the arrival of the fire plumes, which causes the larger variability of the OOA-BB levels during this early morning period.

The OOA diurnal profile (which is very similar to the sulfate one) suggests that there is still chemistry and production of both sulfate and OOA near the site and that the corresponding conversion of organic compounds to OOA and sulfur dioxide to sulfate has not been completed. This chemical processing together with vertical exchange processes could explain the observed average variability. A similar diurnal profile has also been reported by Hildebrandt et al. (2010) in an earlier study in the same area during a similar time period, for the more oxidized, identified organic component. The identified factors were also examined for their mass spectra signatures, their correlation with reference mass spectra and also with other characteristic time series that justify their behavior.

The BBOA component had the characteristic markings of biomass-burning aerosol, which are enhanced signals at m/z 60 and 73 probably from levoglucosan and related compounds (Schneider et al., 2006; Cottrell et al., 2008). It also had prominent peaks at m/z 27, 29, 41, 43, 55, 57, 77 and 91 and significant contributions at high m/zs that are indicative of freshly emitted organic aerosol. The m/z 57, which is pronounced in our BBOA mass spectrum, has two possible origins that are biomass-burning relevant, as it can originate from levoglucosan (most probably $C_9H_{16}O_9^+$), but it is also a typical fragment of saturated hydrocarbon compounds or of long alkyl chains ($C_9H_{18}^+$), therefore it can be a good marker for fresh aerosol (Alfarra et al., 2004; Capes et al., 2008). The fresh BBOA factor in our study had an O/C of 0.2 and an H/C of 1.3, consistent with other observed BBOA (Fig. 4c). The BBOA-factor time series showed good correlation with both the estimated BC coming from wood burning ($R_{\text{pearson}}=0.81$) as well as with nitrate ($R_{\text{pearson}}=0.75$) for the whole measurement period and no correlation with sulfate or ammonium.
The OOA-BB mass spectrum displayed characteristics of oxidized OA with enhanced signals at m/z 18, 29 and 44. It also had a small signal at m/z 43, implying its potential origin from primary OA. It is possible that processed HOA, which is also apparent from the BC source apportionment (Fig. 3b) can partially contribute to the background concentrations of OOA-BB. Nevertheless it is evident that during the fire events the grand majority of this factor is derived from biomass burning. Its O/C was 0.9 and its H/C 1.3, indicating its processed nature. OOA-BB correlated with nitrate ($R_{\text{pearson}} = 0.63$) and BC ($R_{\text{pearson}} = 0.48$) for the whole measurement period and displayed lower correlation with sulfate and ammonium ($R = 0.29$ and 0.38 respectively). If one focuses on the specific period during which the site was affected by the fire plumes, the respective $R$ values between OOA-BB and BC were 0.74, 0.59, 0.71, 0.53 and 0.45. The breakdown of correlation suggests that during these periods a fraction of the total variance of the two variables can be explained by the common biomass-burning source. Indeed, when using the estimated BC coming from biomass burning the respective values were 0.9, 0.69, 0.79, 0.77 and 0.64, while for the whole time period the comparison between the OOA-BB with the estimated BC from wood burning also showed significant correlation ($R_{\text{pearson}} = 0.69$). OOA-BB also peaked during the fire periods and exhibited similar diurnal variability with the BBOA factor (Fig. 5) further supporting its classification as processed biomass-burning OA.

The OOA component had the characteristics of oxidized organic aerosol, like OOA-BB, but the relative intensity of m/z 18 and 44 is even more pronounced, indicating more oxidized aerosol, which is also supported by its elevated O/C (1.2). The intensity of other fragments in its spectrum is low. This factor correlates well with both sulfate and ammonium ($R_{\text{pearson}} = 0.59$ and 0.62, respectively). The concentration of OOA peaks during the periods when the site was affected by the fire plumes. This indicates that apart from the multiple possible source origins of OOA, it is also a product of the chemical processing of BBOA in the atmosphere.

Figure 6 shows the similarity (expressed as the angle $\theta$ between the spectra; Kostenidou et al., 2009) between the identified factors in this study and other relative organic aerosol
Fig. 6. Comparison (theta angles) between the identified factors of this study with relative organic aerosol spectra (color-coded by PMF solution): (a) fresh biomass-burning factor, (b) aged biomass-burning factor, and (c) oxygenated organic aerosol factor. The dashed lines represent the limits between good, moderate and poor correlation.

spectra found in the AMS mass spectral database (http://cires.colorado.edu/jimenez-group/AMSSd/). Briefly, spectra that exhibit angles less than 15° are similar to each other, spectra with angles between 15 and 30° indicate some similarity but also some important differences, while spectra with theta angles larger than 30° do not compare well. Our BBOA spectrum correlates well with the average BBOA of Ng et al. (2011), obtained by averaging together BBOA mass spectra from two sites (Mexico City and Houston data sets) and has some similarity with the spectra of OA from laboratory burns of pine, oak and spruce (Schneider et al., 2006). The derived BBOA had comparable features with ambient BBOA spectra from Mexico (Aiken et al., 2009), the Po Valley (Saarikoski et al., 2012) and Barcelona (Mohr et al., 2012) (θ between 25 and 30°). The OOA-BB factor correlates well with organic aerosol from the Po Valley and Barcelona, as well as with less oxidized OOA reported for the same sampling site (Finokalia) in past studies during spring and fall (Hildebrandt et al., 2010a; 2011). It does not correlate well with OOA associated with wood burning in fireplaces in Paris during the winter (Crippa et al., 2013) nor with semivolatile OA from Pasadena (Hersey et al., 2011). Finally, OOA correlates well with the more oxidized OOA found for the same site in previous campaigns and resembles the OOA found in Barcelona, Zurich during winter and OOA in the Po Valley.

The contribution of each factor to the OA and the characteristic fragments to the OA mass spectrum of the different fire events is summarized in Table 1. These results are based on separate PMF analysis for each event by selecting the corresponding three-factor solution (SI-4.4). The separate analysis of each event was performed to avoid the a priori constraint that all BBOA spectra were the same and
to quantify their similarities and differences (summarized in Table 1). OOA-BB and OOA mass spectra during each event correlated well with the respective OOA-BB and OOA spectra for the whole measurement period (shown in Fig. 5b) but also with the corresponding spectra of the rest of the events (θ < 15 and 9° respectively). \( f_{60} \) and \( f_{73} \) diminish and \( f_{44} \) increases as the transport time of the plume increases. According to Cubison et al. (2011), \( f_{60} \) has consistent background-level values of around 0.3% in OA with negligible BB influence, with plumes exhibiting a trend toward lower \( f_{60} \) with time. This is also the case in our study where the Sicily and Croatia fire events exhibit the lowest values, close to these background levels. We estimated an e-folding time of 12 h for \( m/z \) 73 and 28 h for \( m/z \) 60 for these fire events. The BBOA fraction in the OA during these events decreases from approximately 40% for 7 h of processing to around 15% for 16 h. The OOA-BB fraction remains relatively constant, while the OOA increases from around 30% to around 60% as the aerosol ages. These are consistent with a transformation of the BBOA to OOA-BB and then to OOA during the chemical aging of the OA.

Based on these results, the biomass-burning-influenced air masses arriving from Sicily after 30 h of travel lacked any characteristic BBOA marker. This is an indication that these markers have a finite lifetime, especially during summertime Mediterranean conditions, which combine high temperatures and high insolation periods. \( f_{60} \) seems to be a robust BB tracer only for timescales of up to 1 day from emission. Even with a few hours of atmospheric processing, and mostly during nighttime, the majority of the freshly emitted BBOA is processed and transformed to more oxidized OA, with OOA-BB accounting for 30% on average of the total organic mass. This is consistent with the observations of aging of fresh biomass-burning OA in plumes over Canada within a few hours after emission (Lathem et al., 2013). This aging was attributed to possible gas-phase oxidation of semivolatile species and also to evaporation of primary semivolatile species (Cubison et al., 2011). Therefore, this aging can be attributed to substantial evaporation of semivolatile species upon dilution of the BB plume but also to heterogeneous or homogeneous reactions that take place during the transport time. This suggests that the contribution of biomass-burning-influenced aerosol can be largely underestimated as a significant part of it may be misidentified as OOA, but not taking into account that it is derived from BBOA.

### 4 Summary and conclusions

High-temporal-resolution measurements were conducted at a remote background site in the eastern Mediterranean with an ACSM and an aethalometer during the period August–September 2012. During the measurement period PM\(_1\) concentrations ranged from 3.2 to 34.2 \( \mu g \text{ m}^{-3} \) with an average value of \( 12.2 \pm 4.7 \mu g \text{ m}^{-3} \) with organics and sulfate being the abundant species, each accounting for \(~40\%\) of the PM\(_1\). Five discrete biomass-burning events were identified from characteristic tracers in the organics mass spectrum as well as in the BC time series; and origin of the air masses was verified by backward trajectory analysis. For all the cases the smoke was transported for several hundreds of kilometers. In three events the smoke arrived at the site early in the morning, after around 8 h of nighttime atmospheric processing. One additional fire event involved air masses with an approximate travel time of 30 h, coming from Sicily. During the fire events the contribution of organics to the total mass increased to almost 50\%, with BC also showing an increase in contribution to almost 10\% of the PM\(_1\).

By performing PMF analysis three factors were derived: one having characteristics of biomass burning, one with oxygenated BBOA, and one with highly oxygenated organic aerosol. The BBOA component showed reasonable correlation with reference average BBOA mass spectra while more oxidized OOA correlated well with reference OOA mass spectra. BBOA correlated well with BC coming from wood burning and nitrate, processed BBOA (OOA-BB) also had high correlation with nitrate and BC from wood burning and more oxidized OOA correlated well with sulfate and ammonium. More than 80\% of the total organic mass is accounted for by the two oxygenated OOA factors. The OA as a result was highly oxygenated with an overall O/C ratio that had a mean value of 0.9.

Even within 8–9 h of travel, and mostly during nighttime, most of the freshly emitted BBOA had been processed and transformed to more oxidized OOA, with processed-BBOA accounting for 30% on average of the total organic mass. This suggests that the biomass-burning contribution to OA can be misidentified as OOA contribution, therefore underestimating the importance of BBOA, especially during time periods of high biomass-burning activity.

The biomass-burning-influenced air masses arriving from Sicily after 30 h of travel lacked any characteristic BBOA marker. This is an indication that these markers have a finite lifetime, especially during summertime Mediterranean
conditions, which combine high temperatures and high-insolation periods. $f_{60}$ seems to be a robust BB tracer only for timescales of up to 1 day from emission.

**Supplementary material related to this article is available online at** http://www.atmos-chem-phys.net/14/4793/2014/acp-14-4793-2014-supplement.pdf.

Acknowledgements. The research project is implemented within the framework of the action Supporting of Postdoctoral Researchers of the Operational Program Education and Lifelong Learning (action’s beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. E. Kostenidou and S. N. Pandis acknowledge the support of the FP7 project ATMOPACS. The authors would also like to thank N. L. Ng for her valuable insights on PMF analysis. N. Mihalopoulos acknowledges the support of the FP7 project ACTRIS.

Edited by: A. Laaksonen

**References**


A. Bougiatioti et al.: Processing of biomass-burning aerosol in the eastern Mediterranean


