Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 14, issue 7
Atmos. Chem. Phys., 14, 3771-3787, 2014
https://doi.org/10.5194/acp-14-3771-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 3771-3787, 2014
https://doi.org/10.5194/acp-14-3771-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Apr 2014

Research article | 15 Apr 2014

Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere

L. Cao1, H. Sihler2,3, U. Platt2, and E. Gutheil1 L. Cao et al.
  • 1Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
  • 2Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany
  • 3Max Planck Institute for Chemistry, Mainz, Germany

Abstract. The role of halogen species (e.g., Br, Cl) in the troposphere of polar regions has been investigated since the discovery of their importance for boundary layer ozone destruction in the polar spring about 25 years ago. Halogen species take part in an auto-catalytic chemical reaction cycle, which releases Br2 and BrCl from the sea salt aerosols, fresh sea ice or snowpack, leading to ozone depletion. In this study, three different chemical reaction schemes are investigated: a bromine-only reaction scheme, which then is subsequently extended to include nitrogen-containing compounds and chlorine species and corresponding chemical reactions. The importance of specific reactions and their rate constants is identified by a sensitivity analysis.

The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, β, i.e., the ratio of reactive surface area to total ground surface area, and the boundary layer height, Lmix. It is found that for β = 1, a substantial ozone decrease occurs after five days and ozone depletion lasts for 40 h for Lmix = 200 m. For about β ≥ 20, the time required for major ozone depletion ([O3] < 4 ppb) to occur becomes independent of the height of the boundary layer, and for β = 100 it approaches two days, 28 h of which are attributable to the induction and 20 h to the depletion time.

In polar regions, a small amount of NOx may exist, which stems from nitrate contained in the snow, and may have a strong impact on the ozone depletion. Therefore, the role of nitrogen-containing species on the ozone depletion rate is studied. The results show that the NOx concentrations are influenced by different chemical reactions over different time periods. During ozone depletion, the reaction cycle involving the BrONO2 hydrolysis is dominant. A critical value of 0.0004 of the uptake coefficient of the BrONO2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NOx species accelerates the ozone depletion event, whereas for lower values, deceleration occurs.

Publications Copernicus
Download
Citation