Supplement for “Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model”

W. T. Chen¹, M. Shao¹, S. H. Lu¹, M. Wang¹, L. M. Zeng¹, B. Yuan¹*, Y. Liu²

¹State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
²Chinese Research Academy of Environmental Sciences, Beijing, China
*now at: Earth System Research Laboratory, Chemical Sciences Division, NOAA, 325 Broadway, Boulder, Colorado 80305, USA

Correspondence to: M. Shao (mshao@pku.edu.cn, Tel.: 086 10 62757973)

Inter-comparison of VOCs measurements

C₃–C₄ carbonyls, C₆–C₉ aromatics, isoprene and MVK+MACR were measured simultaneously by online GC-MS and PTR-MS in this study. Figure S1 shows the comparison between the PTR-MS and online GC-MS data for these species. For this comparison, the PTR-MS data were averaged over the sampling period of online GC-MS. The blue lines in the figures show the results of orthogonal distance regressions (ODR) (de Gouw et al., 2003). Some compounds would form ions with the same m/z, and PTR-MS could not separate them. For these compounds, the PTR-MS results were compared with the sum of the online GC-MS data.

Good agreements were found between these two systems for C₃–C₄ carbonyls and C₆–C₉ aromatics, with correlation coefficients larger than 0.90 and slopes ranging from 0.8 to 1.2 (Fig. S1(a-f)). The correlation coefficient between the PTR-MS and online GC-MS data for isoprene was only 0.78 (Fig. S1(g)). A significant intercept (about 0.2 ppb) was found for PTR-MS measured isoprene. Previous studies reported that the measurements of isoprene by PTR-MS at m/z 69 might have interferences from other species (e.g. 2-methyl-3-buten-2-ol, pentanal, methyl butanal, and pentenol) (de Gouw et al., 2003; Yuan et al., 2012). In this study, isoprene data from online GC-MS was used for PMF analysis. The correlation...
between the PTR-MS and online GC-MS data for MVK+MACR was acceptable (r=0.90), but the quantitative agreement was not well: the slope determined by the ODR analysis was 1.35 (Fig. S1(h)). MVK and MACR were two important products from isoprene oxidation, and they were detected with a different sensitivity by PTR-MS. Thus, the response factor for the PTR-MS signal at m/z 71 depended on the MVK/MACR ratio. Besides the uncertainty of response factor, several compounds, include pentenes, methyl butenes, and crotonaldehyde could be detected at m/z 71 (de Gouw et al., 2003). This might explain the differences between PTR-MS and online GC-MS measurement for MVK+MACR.

Inter-comparison between PTR-MS and DNPH-HPLC method (EPA TO11A) was done half year before our campaigns at a supersite in south of China (22.71 °N, 112.93 °E). Good agreements were found for formaldehyde and acetaldehyde (Fig. S2). The ambient humidity during our inter-comparison ranged from 10.8 to 30.1 mmol mol⁻¹. After correcting the influence of humidity on formaldehyde response, a correlation coefficient of 0.93 and a slope of 1.06 were found between PTR-MS and DNPH-HPLC method. In this work, the ambient humidity in Beijing ranged from 8.1 to 33.6 mmol mol⁻¹ in summer, and from 5.1 to 25.5 mmol mol⁻¹ in winter. In these two seasons, 94% and 79% of the humidity of sampled data were within the range of our inter-comparison study. So we considered that the formaldehyde measurements in this study could be validated by the previous inter-comparison.

Estimation of carbonyl loss rate coefficients

Photolysis frequencies of selected species were measured by a multi-channel spectrometer with photodiode array (CarlZeiss MicroImaging GmbH) (Yuan et al., 2013). As the photolysis frequencies of acetaldehyde and acetone were not measured, we calculated photolysis frequencies using a parameterization equation (Eq. (S1)). Z is the solar zenith angle. L, m and n are parameters for different species, which can be found in the paper of Saunders et al. (2003). The photolysis frequencies would be affected by different weather conditions, so we corrected them with the ratios between the measured J(NO₂) and calculated J(NO₂) (Eq. (S2)).
To validate our calculation, we compared the calculated $J_{\text{formaldehyde}}$ with the measured $J_{\text{formaldehyde}}$, a good agreement was found with a slope of 1.14 and a correlation coefficient of 0.99.

The diurnal variations of photolysis frequencies were shown in Fig. S3, comparing with the reaction coefficients with OH. The reaction coefficients were calculated by multiplying OH concentrations by the rate constants for the reactions of carbonyls and OH radical. As OH concentrations have not been measured in the urban region of Beijing, we used the modeled result from Liu et al. (2012) for summer. In winter, we assumed the OH concentration to be 4 times lower than in summer according to the measurements in Tokyo (Kanaya et al., 2007).

As shown in Fig. S3, reactions with OH radical were the main pathway of carbonyl removal, which contributed to 69%, 99% and 87% of the 24-h averaged loss rates of formaldehyde, acetaldehyde and acetone in summer, and contributed to 67%, 99% and 91% in winter.

Comparison of o-xylene/ethylbenzene ratios between 2010 and 2011

The concentrations of NMHCs were measured in 2010 summer with the same online GC-MS/FID system used in this study. The detailed information of that campaign has been described by Yuan et al. (2012).

The ratio between two NMHC species with common sources and evident differences in k_{OH} was often used as an indicator for the degree of photochemical processing (de Gouw et al., 2005; Yuan et al., 2012). In this study, we compared the diurnal variations of o-xylene/ethylbenzene ratios between 2010 and 2011. As the chemical reactivity of o-xylene was higher than ethylbenzene, the ratios of o-xylene to ethylbenzene would be higher in fresh air mass and lower in aged air mass.

As shown in Fig. S4, the ratios of o-xylene to ethylbenzene had similar diurnal variations in 2010 and 2011. However, the relative standard deviations of o-xylene/ethylbenzene ratios were 30% higher in 2010 than in 2011. This means the
variation of photochemical processing degree is larger in 2010.
References

de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, M.,
Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton transfer
reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in
the atmosphere during the New England Air Quality Study (NEAQS) in 2002, J. Geophys.

de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M.,
Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C.,
Marchewka, M., Bertman, S. B., and Bates, T. S.: Budget of organic carbon in a polluted
atmosphere: Results from the New England Air Quality Study in 2002, J. Geophys.

Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H.,
Takegawa, N., and Kondo, Y.: Urban photochemistry in central Tokyo: 1. Observed and
modeled OH and HO2 radical concentrations during the winter and summer of 2004, J.

Amoroso, A., Costabile, F., Chang, C. C., and Liu, S. C.: Summertime photochemistry during
CAREBeijing-2007: ROx budgets and O3 formation, Atmos. Chem. Phys., 12, 7737-7752, doi:
10.5194/acp-12-7737-2012, 2012.

the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of
non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161-180, doi:
10.5194/acp-3-161-2003, 2003.

Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y.,
Zhang, J., and Hu, M.: Volatile organic compounds (VOCs) in urban air: How chemistry
affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys.

emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China,

5
Fig. S1. Comparison between PTR-MS and online GC-MS data. The blue line gives the result of an ODR analysis.
Fig. S2. Comparison between PTR-MS and DNPH data. The blue line gives the result of an ODR analysis.
Fig. S3. Carbonyl loss rate coefficients in Beijing
Fig. S4. Diurnal variations of o-xylene/ethylbenzene ratios in 2010 and 2011