Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 14, issue 23
Atmos. Chem. Phys., 14, 12915-12930, 2014
https://doi.org/10.5194/acp-14-12915-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 12915-12930, 2014
https://doi.org/10.5194/acp-14-12915-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Dec 2014

Research article | 08 Dec 2014

Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment

V. Verma1, T. Fang1, H. Guo1, L. King1, J. T. Bates1, R. E. Peltier2, E. Edgerton3, A. G. Russell1, and R. J. Weber1 V. Verma et al.
  • 1Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30328, USA
  • 2University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
  • 3Atmospheric Research & Analysis, 410 Midenhall Way, Cary, NC 27513, USA

Abstract. We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern United States to generate reactive oxygen species (ROS) and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated samples) collected at various sites in different environmental settings in the southeast, including three urban-Atlanta sites, in addition to a rural site. Paired sampling was conducted with one fixed site in Atlanta (Jefferson Street), representative of the urban environment, with the others rotating among different sites, for ~250 days between June 2012 and September 2013 (N=483). A simple linear regression between the DTT activity and aerosol chemical components revealed strong associations between PM ROS-generation potential and secondary organic aerosol (WSOC – water-soluble organic carbon) in summer, and biomass burning markers in winter. Redox-active metals were also somewhat correlated with the DTT activity, but mostly at urban and roadside sites. Positive matrix factorization (PMF) was applied to apportion the relative contribution of various sources to the ROS-generation potential of water-soluble PM2.5 in urban Atlanta. PMF showed that vehicular emissions contribute uniformly throughout the year (12–25%), while secondary oxidation processes dominated the DTT activity in summer (46%) and biomass burning in winter (47%). Road dust was significant only during drier periods (~12% in summer and fall). Source apportionment by chemical mass balance (CMB) was reasonably consistent with PMF, but with higher contribution from vehicular emissions (32%). Given the spatially large data set of PM sampled over an extended period, the study reconciles the results from previous work that showed only region- or season-specific aerosol components or sources contributing to PM ROS activity, possibly due to smaller sample sizes. The ubiquitous nature of the major sources of PM-associated ROS suggests widespread population exposures to aerosol components that have the ability to catalyze the production of oxidants in vivo.

Publications Copernicus
Download
Short summary
The major emission sources of the reactive oxygen species (ROS) associated with ambient particulate matter in the southeastern United States were identified. The study shows biomass burning and secondary aerosol formation as the major sources contributing to the ROS-generating capability of ambient particles. The ubiquitous nature of these two sources suggests widespread population exposures to the toxic aerosol components.
The major emission sources of the reactive oxygen species (ROS) associated with ambient...
Citation
Share