Henry’s law constants of polyols

S. Compernolle and J.-F. Müller
Belgian Institute for Space-Aeronomy, 1180 Brussels, Belgium

Correspondence to: S. Compernolle (steven.compernolle@aeronomie.be)

Received: 8 May 2014 – Published in Atmos. Chem. Phys. Discuss.: 23 May 2014
Revised: 24 October 2014 – Accepted: 12 November 2014 – Published: 8 December 2014

Abstract. Henry’s law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

1 Introduction

Henry’s law constant (HLC) describes the partitioning of a compound between the gas phase and a liquid, highly dilute solution. In the atmosphere, such dilute solutions, with water as the solvent, can be reached in cloud droplets. Aqueous aerosols are another example where liquid water is important, but in this case the solvent must be regarded as multi-component, with significant inorganic and/or organic contributions. In a previous work (Compernolle and Müller, 2014), we determined additional HLC data for diacids and hydroxy polyacids, from water activities, solubilities and vapour pressures, employing thermodynamic relationships. We follow the same approach in this work, but with a focus on polyols: compounds with two or more hydroxyl groups, but no other functional group. Polyols such as 2-methyl tetrols were identified as important secondary organic aerosol (SOA) constituents (Claeys et al., 2004). HLC data on polyols are limited. Data are available e.g. in the often-cited compilation of Sander (1999). In this compilation however, most values are estimated by a group-contribution method, while only for three molecules are experimental values included, and some of the data were evaluated as unreliable.

In Sect. 2, we first briefly review the thermodynamic relationships employed to derive HLC (k_h) and the associated enthalpy of dissolution of a gas phase species ($\Delta H^\infty_{g\rightarrow aq}$). In Sect. 3 we derive intermediate results, namely infinite dilution activity coefficients (IDACs), solid state vapour pressures and activity coefficient ratios, which are necessary components in deriving HLC but not as such available in the literature for all compounds. Next (Sect. 4), we present k_h and $\Delta H^\infty_{g\rightarrow aq}$ using the data from the previous section and other literature data. An error analysis is presented in Appendix A. In Sect. 5, we discuss the implications for partitioning to cloud droplets and aqueous ammonium sulfate aerosol, making use of the activity coefficient model AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) (Zuend et al., 2011). We extend this also to dicarboxylic acids and hydroxy polyacids, making use of a model presented at the site E-AIM (Extended AIM Aerosol Thermodynamics Model), available at http://www.aim.env.uea.ac.uk/aim/aim.php, (see e.g. Clegg and Seinfeld, 2006; Friese and Ebel, 2010) to calculate the acid dissociation.

Note that in this work, non-IUPAC names are used for polyols with three or more hydroxyl groups. Their structures are presented in Table 1.

Published by Copernicus Publications on behalf of the European Geosciences Union.
2 Thermodynamic relationships between HLC and other quantities

For HLC, several definitions exist. We will follow here the convention used by Sander (1999):

\[k_h \equiv \lim_{c_s, p_s \to 0} \frac{c_s}{p_s} \]
\[k_h^p \equiv \lim_{c_s, p_s \to 0} \frac{x_s}{p_s} \]

with \(c_s \) the solute molar concentration of the solution and \(p_s \) its partial pressure above it. Note that we assume ideal gas behaviour for the solute. With this convention, a larger \(k_h \) means a higher partitioning of the solute to the solution. At some point, we will employ also another definition of HLC, following again the notation of Sander (1999):

\[k_h^p \equiv \lim_{c_s, p_s \to 0} \frac{x_s}{p_s} \]

with \(x_s \) the solute mole fraction. The \(p_x \) superscript specifies that vapour pressure \(p \) is used for the gas phase concentration, and mole fraction \(x \) for the aqueous phase concentration.

The relation between both quantities is

\[k_h / k_h^p = c_{sol} \]
\[(3) \]

with \(c_{sol} \) the total molar concentration of the solution (or solvent, since we assume that the solute is infinitely diluted).

In the case that the solvent is pure water, we write \(c_{sol} = c_w \) (equal to 55.5 mol L\(^{-1}\) at 298.15 K).

If the solute is a liquid at the temperature of interest and the solvent is water, \(k_h \) can be obtained by

\[k_h = \frac{c_w}{\gamma^\infty p_L^0} \]
\[(4) \]

with \(\gamma^\infty \) the infinite dilution activity coefficient (IDAC) of the solute (mole fraction based and with the symmetric convention \(\gamma^\infty = 1 \) for pure liquid solute) and \(p_L^0 \) its pure liquid state vapour pressure. The corresponding enthalpy of dissolution of an infinitesimal amount of gas phase species (\(\Delta H_{g \rightarrow aq}^\infty \)) can be derived from the van ‘t Hoff equation (see e.g. Atkins and de Paula, 2006) and (neglecting the small temperature dependence of \(c_w \)) related to the enthalpy of vaporization (\(\Delta H_{vap} \)) and the enthalpy of solution of the liquid solute at infinite dilution (\(\Delta H_{L \rightarrow aq}^\infty \)) using Hess’s law (Atkins and de Paula, 2006),

\[-R \frac{d \ln k_h}{d (1/T)} = \Delta H_{g \rightarrow aq}^\infty \]
\[= \Delta H_{L \rightarrow aq}^\infty - \Delta H_{vap} \]
\[(5) \]

since the dissolution of a gas in a solvent can be considered as first a condensation of the gas to the pure liquid (corresponding to \(-\Delta H_{vap} \)) followed by a dissolution of this liquid in the solvent (corresponding to \(\Delta H_{L \rightarrow aq}^\infty \)). \(\Delta H_{vap} \) and \(\Delta H_{L \rightarrow aq}^\infty \) can themselves be derived from the van ‘t Hoff equation or, for Eq. (7), from the Clausius–Clapeyron equation (Atkins and de Paula, 2006):

\[\Delta H_{L \rightarrow aq}^\infty = R \frac{d \ln \gamma^\infty}{d (1/T)} \]
\[(6) \]

\[\Delta H_{vap} = - R \frac{d \ln p_L^0}{d (1/T)} \]
\[(7) \]

If the solute is a solid at room temperature, as is generally the case for polyols with more than three hydroxyl groups, the following equation can be applied instead of Eq. (4) (see Compernolle and Müller, 2014, for the derivation):

\[k_h = \frac{\gamma^{sat} c_w x^{sat}}{p_Cr} \]
\[(8) \]

with \(x^{sat} \) the solute mole fraction at the solubility limit and \(\gamma^{sat} \) the corresponding activity coefficient. In the case that the solubility is small, \(\gamma^\infty / \gamma^{sat} \approx 1 \) and Eq. (8) reduces to

\[k_h \approx c_w x^{sat}/p_Cr \]
\[(9) \]

The corresponding enthalpy of dissolution of gas phase species, derived from the van ‘t Hoff equation, can be related to (again neglecting the temperature dependence of \(c_w \)) the sublimation enthalpy (\(\Delta H_{sub} \)) and the enthalpy of solution of the solid at infinite dilution (\(\Delta H_{Cr \rightarrow aq}^\infty \)) using Hess’s law (Atkins and de Paula, 2006),

\[\Delta H_{g \rightarrow aq}^{\infty} = - R \frac{d \ln k_h}{d (1/T)} \]
\[= \Delta H_{Cr \rightarrow aq}^\infty - \Delta H_{sub} \]
\[(10) \]

with

\[\Delta H_{sub} = - R \frac{d \ln p_Cr}{d (1/T)} \]
\[(11) \]

\[\Delta H_{Cr \rightarrow aq}^{\infty} = - R \frac{d \ln \gamma^{sat}}{d (1/T)} \]
\[= \Delta H_{fus} + \Delta H_{L \rightarrow aq}^{\infty}. \]
\[(12) \]

Equation (11) is the Clausius–Clapeyron equation for sublimation (Atkins and de Paula, 2006). Equation (12) can be derived by combining Eqs. (6) and (8) and the van ‘t Hoff relation for the activity of the solid \(a_s^{sat} \) (see e.g. Nordström and Rasmuson, 2008):

\[\frac{d \ln \gamma^{sat}}{d (1/T)} = \frac{d \ln a_s^{Cr}}{d (1/T)} = - \frac{\Delta H_{fus}}{R}. \]
\[(13) \]

The data required for Eqs. (4), (5), (8) and (10) is not always available in the literature. In Sect. 3, data for IDACs, solid state pressures and activity coefficient ratios are derived.
Table 1. Molecular structures of polyols with three or more hydroxyl groups, discussed in this work using non-IUPAC names.

<table>
<thead>
<tr>
<th>name</th>
<th># OH</th>
<th>structure</th>
<th>name</th>
<th># OH</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycerol</td>
<td>3</td>
<td></td>
<td>arabinitol</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>4</td>
<td></td>
<td>sorbitol</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>4</td>
<td></td>
<td>mannitol</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>xylitol</td>
<td>5</td>
<td></td>
<td>dulcitol</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>adonitol</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a also named ribitol, b also named arabitol, c stereo isomer of xylitol, d also named galacticol, e stereo isomer of sorbitol.

3 Intermediate results

3.1 Infinite dilution activity coefficients

In the case that the compound is a liquid at room temperature, Eq. (4) applies and the IDAC is required. Estimation methods to calculate activity coefficients exist (e.g. Fredenslund et al., 1975; Peng et al., 2001; Marcolli and Peter, 2005; Compernolle et al., 2009; Zuevd et al., 2011) but experimental data are preferred. Suleiman and Eckert (1994) provide IDAC data for diols, but only for compounds with up to four carbon atoms. For many other polyols, the IDAC of the solute is not reported, but instead data are available on the water activity \(\alpha_w \) as a function of mixture composition. In that case, \(\gamma_s^\infty \) can be obtained by the Gibbs–Duhem relation (here stated in its integral form) (Prausnitz et al., 1999; Mansoori, 1980),

\[
\ln \gamma_s^\infty = \int_0^1 \frac{\ln \gamma_w(x_w)}{(1-x_w)^2} \mathrm{d}x_w \tag{14}
\]

with \(\gamma_w = \alpha_w/x_w \) the activity coefficient of water and \(x_w \) the water mole fraction. Note that we added the subscript “s” to \(\gamma^\infty \) to distinguish clearly the activity coefficient of the solute and the activity coefficient of water.

If sufficiently precise, fine-grained \(\alpha_w \) data over the whole composition range would be available, and numeric integration of the integral in Eq. (14) would be most straightforward. If this is not the case, an alternative is to fit the \(\ln \gamma_w \) data with an activity coefficient expression \(f \), e.g. Margules, Van Laar, Wilson or UNIQUAC (Prausnitz et al., 1999; Carlson and Colburn, 1942) – see Appendix A2 for the expressions.

Marcolli and Peter (2005) provide \(\alpha_w \) data for 14 diols and two triols over a broad composition range (\(x_w \) typically between 0.1 and 0.95.), but the data are rather coarse grained. This is especially critical in the dilute region; from Eq. (14) it can be concluded that a small change in \(\ln \gamma_w \) leads to a comparatively large change in \(\ln \gamma_s \). Therefore, where possible, we included also more fine-grained data in the dilute region (Borghesani et al., 1989; Romero and Páez, 2006, \(x_w \) typically between 0.93 and 0.996). In Table 2 the resulting \(\gamma_s^\infty \) are presented. For eight diols we present also the \(\gamma_s^\infty \) estimation without taking the available dilute region data into account, i.e. based on the Marcolli and Peter (2005) data only. This can then be compared with the \(\gamma_s^\infty \) based on all data. In most cases, the difference in the resulting IDAC is rather small (see Appendix A2). This indicates that even in those cases where only the coarse-grained data of Marcoli and Peter (2005) are available, the derived \(\gamma_s^\infty \) are still quite reliable.

Often, we were able to fit an activity expression to all \(\ln \gamma_w \) data. In other cases, where the broad-ranged but coarse-grained data of Marcoli and Peter (2005) was combined with the more fine-grained data in the dilute region, we had to split the integral in Eq. (14) into two parts. More details on the procedure to derive \(\gamma_s^\infty \) are provided in Appendix A2. Also included in Appendix A2 is an uncertainty analysis in the derived \(\gamma_s^\infty \) values by applying systematic and random shifts to the \(\alpha_w \) data, by testing alternative activity expressions and by comparing \(\gamma_s^\infty \) derived with and without dilute region data.

The \(\gamma_s^\infty \) for pentane and hexane diols, derived from surface tension data, are reported by Romero et al. (2007) and Páez et al. (2011). These are considerably higher than the data presented in Table 2. However, as explained by Brocos et al. (2007), very accurate surface tension data are a prerequisite to derive \(\gamma_s^\infty \); the \(\gamma_s^\infty \) of diols, derived from surface
tension data, are all overestimated compared to the literature data in their analysis. Moreover, it is not clear to us whether the applied approximation (the Volmer surface equation of state, see Gracia-Fadrique et al., 2002) is valid in this case.

3.2 Solid state vapour pressures

The liquid state vapour pressure of organic compounds can be estimated (e.g. Pankow and Asher, 2008; Nannoolal et al., 2008; Compernolle et al., 2011), but for polyfunctional compounds the result is often not accurate. Solid state vapour pressure is even more difficult to estimate, as this depends on the molecular arrangement in the crystal structure which is compound specific. Therefore, experimental data are preferred. Solid state and/or liquid state vapour pressure data for polyols with four or more hydroxyl groups is available (Barone et al., 1990; Bradley and Cotson, 1953; Nitta et al., 1950, 1951), but obtained at temperatures considerably above room temperature. The solid state vapour pressure at $T_{\text{ref}} = 298.15 \text{ K}$ is given by

\[
\ln p_{\text{C}_2}^0(T_{\text{ref}}) = \frac{1}{R} \left(\Delta S_{\text{sub}}(T_{\text{ref}}) - \frac{T_{\text{ref}}}{T_{\text{ref}}} \Delta H_{\text{sub}}(T_{\text{ref}}) \right). \tag{15}
\]

If at the temperature of measurement T_{meas}, the compound is a solid, the following temperature correction is applied (Kirchhoff’s law, see e.g. Atkins and de Paula, 2006):

\[
\Delta S_{\text{sub}}(T_{\text{ref}}) = \Delta S_{\text{sub}}(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ref}}} \frac{C_{p,g} - C_{p,Cr}}{T} \, dT \quad \tag{16}
\]

\[
\Delta H_{\text{sub}}(T_{\text{ref}}) = \Delta H_{\text{sub}}(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ref}}} (C_{p,g} - C_{p,Cr}) \, dT
\]

with ΔH_{sub} and ΔS_{sub} weak functions of temperature. If at T_{meas} the compound is a liquid, the fusion point must be taken into account, and the temperature correction is

\[
\Delta S_{\text{sub}}(T_{\text{ref}}) = \Delta S_{\text{sub}}(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ fus}}} \frac{C_{p,g} - C_{p,L}}{T} \, dT + \int_{T_{\text{ fus}}}^{T_{\text{ ref}}} \frac{C_{p,g} - C_{p,Cr}}{T} \, dT \quad \tag{17}
\]

\[
\Delta H_{\text{vap}}(T_{\text{meas}}) + \int_{T_{\text{meas}}}^{T_{\text{ fus}}} (C_{p,g} - C_{p,L}) \, dT + \int_{T_{\text{ fus}}}^{T_{\text{ ref}}} (C_{p,g} - C_{p,Cr}) \, dT
\]

\[
\Delta H_{\text{sub}}(T_{\text{ fus}}) = \int_{T_{\text{ fus}}}^{T_{\text{ ref}}} (C_{p,g} - C_{p,Cr}) \, dT
\]

with $C_{p,g}, C_{p,L}, C_{p,Cr}$ the constant pressure heat capacities for respectively gas, liquid and crystalline phase, $T_{\text{ fus}}$ the melting temperature, $\Delta S_{\text{ fus}}, \Delta H_{\text{ fus}}$ the entropy and enthalpy of fusion, and $\Delta S_{\text{vap}}, \Delta H_{\text{vap}}$ the entropy and enthalpy of vaporization. In most cases, the high-temperature p^0 data are not measured at one temperature but in a temperature interval. T_{meas} then corresponds to the centre of this interval.

Fusion data were taken from Barone et al. (1990), Tong et al. (2007, 2008, 2010a, 2009) and Badea et al. (2014). Experimental heat capacity data for solid and liquid were taken from Tong et al. (2007, 2008, 2009, 2010a, b), Zhang and Yang (1989) and Della Gatta et al. (1999), while for the gas it was calculated by the method of Benson (1976), available from the NIST Chemistry WebBook (Stein and Brown). In Table 3 the derived solid state vapour pressures and sublimation enthalpies at room temperature are presented.

Fusion data of Tong et al. (2007, 2008, 2010a, 2009) on one hand and of Barone et al. (1990) on the other hand could be compared for erythritol, xylitol, adonitol, sorbitol and mannitol. There is generally a good agreement between both data sets: $T_{\text{ fus}}$ was always within 6 K and $\Delta H_{\text{ fus}}$ within 4%, with the exception of xylitol where the deviation is 11%. Interchanging both data sets had an impact of a factor 1.3 on $p_{\text{C}_2}^0$ at room temperature at most. Where available, the more recent data set of Tong et al. was preferred over that of Barone et al. (1990).

Table 2. Infinite dilution activity coefficients derived in this work, the sources of water activity they are based on, and comparison with the literature.

<table>
<thead>
<tr>
<th>molecule</th>
<th>γ^∞_0</th>
<th>σ_w source</th>
<th>γ^∞_0 (lit.)f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>0.75, 0.69b</td>
<td>a, b</td>
<td>0.8</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>1.25, 1.08a</td>
<td>a, b</td>
<td>1.0</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>1.23, 1.25a</td>
<td>a, b</td>
<td>1.2</td>
</tr>
<tr>
<td>1,2-butanediol</td>
<td>3.00, 3.74a</td>
<td>a, b, c</td>
<td>2.0</td>
</tr>
<tr>
<td>1,3-butanediol</td>
<td>2.14, 1.97a</td>
<td>a, b, c</td>
<td>2.2</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>2.27, 2.12a</td>
<td>a, b, c</td>
<td>2.8</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>2.10, 1.77a</td>
<td>a, b, c</td>
<td>1.6</td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>5.99, 5.26a</td>
<td>a, b</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>11.9</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>3.8</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>2.8</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>26.3</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>5.7</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>27.9</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>glycerol</td>
<td>0.52</td>
<td>a, d, e</td>
<td></td>
</tr>
<tr>
<td>1,2,4-butanetriol</td>
<td>0.45</td>
<td>a, d</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Solid state pressure and enthalpy of sublimation of polyols, obtained from Eqs. (15), (16) and/or (17), at T_{ref} = 298.15 K, and reference to the data used to obtain them. $C_{p,L}$ is estimated by the method of Benson (1976).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>$\frac{p^0_{\text{C}}(T_{\text{ref}})}{\text{Pa}}$</th>
<th>$\Delta H_{\text{sub}}(T_{\text{ref}})$</th>
<th>Data source for Eqs. (15), (16) and/or (17)</th>
<th>$\Delta H_{\text{vap}}(L)^a$</th>
<th>T_{interval}</th>
<th>T_{fus}, ΔH_{fus}</th>
<th>$C_{p,L}$ (L)a</th>
<th>C_{p,C_2} (Cr)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonane-</td>
<td>1.4×10^{-3}</td>
<td>148</td>
<td>L^b</td>
<td>g^b</td>
<td>C_r^k, L^j</td>
<td>C_r^k, L^o</td>
<td>C_r^k, L^l</td>
<td>C_r^k, L^m</td>
</tr>
<tr>
<td>diol</td>
<td>2.4×10^{-3}</td>
<td>148</td>
<td>L^c</td>
<td>g^b</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decane-</td>
<td>1.4×10^{-4}</td>
<td>151</td>
<td>L^b</td>
<td>g^b</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>1.7×10^{-4}</td>
<td>161</td>
<td>L^c</td>
<td>g^c</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dialylo</td>
<td>4.7×10^{-7}</td>
<td>155</td>
<td>L^d</td>
<td>g^c</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penta-</td>
<td>3.6×10^{-6}</td>
<td>136</td>
<td>L^d</td>
<td>g^c</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aldehyde</td>
<td>7.2×10^{-9}</td>
<td>166</td>
<td>L^d</td>
<td>g^c</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erythritol</td>
<td>3.5×10^{-7}</td>
<td>135</td>
<td>L^e</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xylitol</td>
<td>9.3×10^{-8}</td>
<td>147</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adonitol</td>
<td>7.5×10^{-8}</td>
<td>162</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arabinitol</td>
<td>2.7×10^{-8}</td>
<td>166</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorbitol</td>
<td>3.6×10^{-11}</td>
<td>198</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mannitol</td>
<td>3.0×10^{-13}</td>
<td>206</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dulcitol</td>
<td>1.9×10^{-13}</td>
<td>210</td>
<td>L^d</td>
<td>g^d</td>
<td>C_r^k, L^o</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a “L” (liquid) and “Cr” (crystalline) are used as shorthand to describe the phase state of the non-gaseous phase. b Kenauth and Sabbah (1990). c Piacente et al. (1993, 1994). d Barone et al. (1990). e Nitta et al. (1950, 1951). f Bradley and Cotson (1953). g Badea et al. (2014). h Tong et al. (2007, 2008, 2009, 2010, ab). i Goralski and Tkaczyk (2008). j Zhang and Yang (1989). k Della Gatta et al. (1999). l No $C_{p,L}$, C_{p,C_2} data were found for arabinitol. The data for adonitol were taken instead. m No $C_{p,L}$ data were found for mannitol and dulcitol in the literature; the $C_{p,L}$ data for sorbitol were taken instead. n No $C_{p,L}$ data for decane diol were found in the literature. It was estimated by the method of Domański and Hearing (1993). 11

$C_{p,L}$ and C_{p,C_2} were not always available. In that case, the data of a stereo-isomer were taken instead. In Appendix A5.2, it is shown that liquid phase heat capacities of polyol stereo-isomers are very close. This is in agreement with the similar ΔS_{vap} and ΔH_{vap} of stereo-isomers reported by Barone et al. (1990) and indicates similar thermodynamic properties of the liquid phase. Regarding C_{p,C_2}, differences between stereo-isomers are larger (see Appendix A5.2) but still the approximation of using a stereo-isomer seems reasonable.

Neglecting the integrals involving the heat capacity differences in Eqs. (16) and (17) can lead to serious error: while for the tetrols the change is only minor, there is a factor of 5 to 7 increase in $p^0_{\text{C}}(298.15 \text{K})$ for the pentols and most hexols, and a factor 40 increase for sorbitol. Estimating $C_{p,g}$ with the method of Joback and Reid (1987) instead of the method of Benson (1976) led to changes in $p^0_{\text{C}}(298.15 \text{K})$ smaller than a factor of 2. Note that these two methods do not take the intramolecular hydrogen bonding into account. The group contribution $C_{p,g}$ estimation method of Paraskevas et al. (2013) and Sabbe et al. (2008), based on quantum chemical data, does include corrections for intramolecular hydrogen bonds. However, it is not clear how to apply these correction terms for species with three or more hydroxyl groups. Using one HOCCO term (NN15 in the terminology of Paraskevas et al. (2013)) per hydroxyl group for the linear polyols, one obtains a factor of 2 to 3 higher $p^0_{\text{C}}(298.15 \text{K})$ for the pentols and hexols, compared to the case when this term is neglected.

In most cases the high-temperature p^0_{L} or p^0_{Cr} data are obtained from a single reference (Barone et al., 1990); only for erythritol and pentaerythritol is a comparison possible between different data sources. The high-temperature p^0_{L} or p^0_{Cr} data of erythritol and pentaerythritol are roughly comparable among the different data sources (Barone et al., 1990; Bradley and Cotson, 1953; Nitta et al., 1951, 1950); if the p^0 parameterizations presented in these works are evaluated at mid-points between their respective T_{meas}, differences ranging from 4 % up to 40 % are obtained. However, due to differences in ΔH_{vap} or ΔH_{sub}, the extrapolated $p^0_{\text{C}}(298.15 \text{K})$ is a factor of 7 to 50 higher if the older data of Nitta et al. (1950, 1951); Bradley and Cotson (1953) are used, compared to when the more recent data of Barone et al. (1990) are used. In the older studies the enthalpy was determined using far fewer data points (6–11, compared to 25–30 for the data of Barone et al., 1990), and specifically for the data of Nitta et al. (1950, 1951), over a quite narrow temperature range ($\pm 292.8 \text{K}$) data (Parks and Huffman, 1926) are comparable to those of mannitol, therefore, C_{p,C_2} of mannitol was taken instead. No $C_{p,L}$ data for decane diol were found in the literature. It was estimated by the method of Domański and Hearing (1993).
Table 4. Mole fraction solubilities x_k^{sat} and activity coefficient ratios $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ derived from a_w data. Estimations of $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ by UNIFAC-MP are also given.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>x_k^{sat}</th>
<th>$\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$</th>
<th>a_w data source</th>
<th>$\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonane diol</td>
<td>1×10^{-3}a</td>
<td>1.0^p</td>
<td>–</td>
<td>1.06</td>
</tr>
<tr>
<td>decane diol</td>
<td>7.6×10^{-5}a</td>
<td>1.0^p</td>
<td>–</td>
<td>1.01</td>
</tr>
<tr>
<td>erythritol</td>
<td>0.074^b</td>
<td>0.84</td>
<td>h, k, i</td>
<td>0.75</td>
</tr>
<tr>
<td>pentaeerythritol</td>
<td>0.00946^c</td>
<td>1.0d</td>
<td>–</td>
<td>0.97</td>
</tr>
<tr>
<td>xylitol</td>
<td>0.18e</td>
<td>0.56</td>
<td>h, j</td>
<td>0.32</td>
</tr>
<tr>
<td>adonitol</td>
<td>0.15d</td>
<td>0.66d</td>
<td>l</td>
<td>0.37</td>
</tr>
<tr>
<td>arabinitol</td>
<td>0.20d</td>
<td>0.60d</td>
<td>l</td>
<td>0.30</td>
</tr>
<tr>
<td>sorbitol</td>
<td>0.196g</td>
<td>0.45o</td>
<td>h, j, m</td>
<td>0.18</td>
</tr>
<tr>
<td>mannitol</td>
<td>0.0209f</td>
<td>0.96o</td>
<td>h, m</td>
<td>0.80</td>
</tr>
<tr>
<td>dulcitol</td>
<td>0.0031d</td>
<td>1.0p</td>
<td>–</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Solubilities: a Merck Millipore (http://www.merckmillipore.com/), at 20 °C, b Hao et al. (2005), c Cheon et al. (2005), d Cohen et al. (1993), e Wang et al. (2013), f Seidell (1941), g Mullin (2001).

a For mannitol, only the a_w data of Robinson and Stokes (1961) were used, as the data of Ninni et al. (2000) led to $\gamma_w > 1$, which is probably wrong.

o Due to the extrapolation involved (no a_w data at x_w), this value is more uncertain.

p No a_w data were found. $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}} = 1$ was assumed because of the low solubility, i.e. Eq. (9) is considered valid.

Uncertainties in the derivation of $p^0_C(T_{\text{ref}})$ are analysed in Appendix A5. The largest uncertainties are encountered for the polyols with four or more hydroxyl groups; due to the large difference between T_{meas} and T_{ref}, relatively small changes in ΔH_{vap} or ΔH_{sub} lead to large changes in $p^0_C(T_{\text{ref}})$. Uncertainty in heat capacity becomes important for the hexols. Uncertainty in fusion data is relatively unimportant.

3.3 Activity coefficient ratios

The ratio $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ can be obtained from water activity data in the subsaturation range (Compernolle and Müller, 2014):

$$
\ln \frac{\gamma_k^{\text{∞}}}{\gamma_k^{\text{sat}}} = \frac{1 - x_k^{\text{sat}}}{x_k^{\text{sat}}} \ln a_w(x_w) + \int_{x_w}^{1} \frac{\ln a_w(x_w)}{(1 - x_w)^2} dx_w
$$

This was done for erythritol, xylitol, sorbitol and mannitol (Fig. 1). The UNIFAC (UNIQUAC Functional-Group Activity Coefficient) method of Marcolli and Peter (2005) (UNIFAC-MP, identical to AIOMFAC for polyol-water systems) underestimates γ_w of these polyol/water mixtures.

For adonitol and arabinitol, we calculated $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ from the one-parameter Margules fittings of Chirife et al. (1984) (see Appendix A4). The results are presented in Table 4. For nonane diol, decane diol, pentaeerythritol and dulcitol, no a_w data were found, but reasonable assumptions for $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ could be made (see Table 4). As expected, the polyols with a lower solubility (erythritol, mannitol) have $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ close to unity. We included estimations of the activity coefficient ratio by UNIFAC-MP. This method gave lower $\gamma_k^{\text{∞}}/\gamma_k^{\text{sat}}$ as compared to our results.

4 Henry’s law constants and enthalpies of gas dissolution

Using Eqs. (4, 5, 8, 10), the data provided in the previous tables, as well as literature data, the Henry’s law constants and gas dissolution enthalpies can be derived. The values are given in Table 5.

The expected order hexols $>$ pentols $>$ tetrols $>$ triol $>$ diols in k_h is generally followed. Diols have k_h between 10^3 and 10^7 mol$^{-1}$ atm$^{-1}$. The diols with longer hydrophobic chains have considerably lower k_h than their α, ω counterparts (e.g. an order of magnitude difference between 1,2- and 1,5-pentane diol). For the linear polyols, k_h and $\Delta H_{\text{f} \rightarrow \text{aq}}^{\text{∞}}$ are roughly comparable among the different stereo-isomers.
5 Impact on gas-particle partitioning

Similarly as for the diacids and hydroxy polyacids (Compernolle and Müller, 2014), we assess the importance of the partitioning to the particulate phase for polyols in clouds and aqueous aerosol, approximating the liquid phase as a dilute aqueous solvent. Moreover, we also perform a sensitivity test, aiming at determining the particulate fraction of polyols, diacids and hydroxy polyacids in the case of an aqueous ammonium sulfate aerosol.

We note that this discussion, based on Henry’s law, is only applicable if the organic compound is present in a tiny amount, and this may not be justified for all situations encountered in the lower atmosphere.

5.1 Pure water as the solvent

For clouds, the liquid water content (LWC) varies between typically 0.1 and 1 g m\(^{-3}\), and for aqueous aerosols between 10\(^{-6}\) and 10\(^{-4}\) g m\(^{-3}\) (Ervens et al., 2011). The particulate fraction of organic solute is equal to

\[f_{p,s} \equiv \frac{n_{p,s}}{n_{p,s} + n_{g,s}} \]

(19)

with \(n_{p,s}, n_{g,s}\) the moles of solute in particulate and gas phase respectively. Using the ideal gas law, Eq. (19) can be transformed into

\[f_{p,s} = \frac{1}{1 + n_{g,s}/n_{p,s}} = \frac{1}{1 + \frac{\rho_{\text{air}}}{\rho} V_{p} \frac{1}{RT} c_{y} V_{p}} \]

(20)

with \(V_{\text{air}}\) a unit volume of air and \(V_{p}\) the particle volume. If partitioning between gas and aqueous phase is governed solely by Henry’s law (Eq. 1), and the solvent is considered pure water, Eq. (20) becomes

\[f_{p,s} = \frac{1}{k^{*}/k_{h} + 1}, \text{ with } k^{*} = \frac{V_{\text{air}}}{V_{s} RT} = \frac{\rho_{w}}{LWC} \frac{1}{RT} \]

(21)
with \(\rho_w \) the density of pure water. From the LWC range given above, and fixing \(T \) to the reference temperature of 298.15 K, it follows that for clouds, \(k^* \) varies between \(4 \times 10^4 \) and \(4 \times 10^5 \) M atm\(^{-1}\). From Table 5, it can be deduced that all polyols with three or more hydroxyl groups will be almost completely partitioned to the aqueous phase. Diols will be completely or partially in the aqueous phase, depending on the case. For aqueous aerosol, if one (falsely) assumes the aerosol phase to be pure water, it is obtained from the LWC range given above that at the reference temperature \(k^* \) varies between \(4 \times 10^8 \) and \(4 \times 10^{10} \) M atm\(^{-1}\). With this assumption, diols will not partition appreciably to the aqueous phase, glycerol will partition to some extent, and only at the highest water content, while all polyols with four or more hydroxy groups should reside almost completely in the particulate phase.

5.2 Aqueous ammonium sulfate aerosol as the solvent

An aqueous aerosol is not a dilute aqueous solution, but is instead a concentrated mixture of organics and/or inorganics. HLC determined for a pure water solvent are less applicable to such mixtures. We present here a sensitivity test for a simple aerosol mixture of water and ammonium sulfate (\((\text{NH}_4)_2\text{SO}_4\), AS).

Note however that this test is only applicable to a situation with a tiny amount of organics. If e.g. a separate organic phase is present, less hydrophilic compounds may partition substantially to the particles, even if the HLC-based analysis suggests otherwise.

Table 5. Henry’s law constants and gas dissolution enthalpies at 298.15 K for the polyols considered in this work, from Eqs. (4, 5, 8, 10).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>(k_h) M atm(^{-1})</th>
<th>(\Delta H^\infty_{L\rightarrow \text{aq}}) (\text{kJ mol}^{-1})</th>
<th>Data source for Eqs. (4) and (5).</th>
<th>(k_h) M atm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>(6.6 \times 10^5)</td>
<td>(-72.9)</td>
<td>(a)</td>
<td>(4.1 \times 10^5)</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>(2.7 \times 10^5)</td>
<td>(-78.8)</td>
<td>(a)</td>
<td>(1 \times 10^5)</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>(1.6 \times 10^5)</td>
<td>(-79.1)</td>
<td>(a)</td>
<td>(9.2 \times 10^5)</td>
</tr>
<tr>
<td>1,2-butanediol</td>
<td>(2.1 \times 10^5)</td>
<td>(-82.1)</td>
<td>(a)</td>
<td>(9.2 \times 10^5)</td>
</tr>
<tr>
<td>1,3-butanediol</td>
<td>(7.1 \times 10^5)</td>
<td>(-84.5)</td>
<td>(a)</td>
<td>(9.2 \times 10^5)</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>(3.5 \times 10^6)</td>
<td>(-89.6)</td>
<td>(a)</td>
<td>(1 \times 10^5)</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>(1.1 \times 10^5)</td>
<td>(-82.2)</td>
<td>(b)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,2-pentanediol</td>
<td>(1.4 \times 10^5)</td>
<td>(-96.5)</td>
<td>(b)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,4-pentanediol</td>
<td>(2.3 \times 10^6)</td>
<td>(-103.4)</td>
<td>(b)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,5-pentanediol</td>
<td>(7.1 \times 10^6)</td>
<td></td>
<td>(a)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>2,4-pentanediol</td>
<td>(3.9 \times 10^5)</td>
<td></td>
<td>(a)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,2-hexanediol</td>
<td>(1.7 \times 10^5)</td>
<td></td>
<td>(a)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>2,5-hexanediol</td>
<td>(1.4 \times 10^5)</td>
<td></td>
<td>(a)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,7-heptanediol</td>
<td>(4.6 \times 10^6)−(8.4 \times 10^6)</td>
<td></td>
<td>(c)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,9-nonanediol</td>
<td>(2.4 \times 10^6)−(4.0 \times 10^6)</td>
<td></td>
<td>(d)</td>
<td>(4 \times 10^5)</td>
</tr>
<tr>
<td>1,10-decanediol</td>
<td>(2.5 \times 10^6)−(3.0 \times 10^6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycerol</td>
<td>(4.8 \times 10^8)</td>
<td>(-92.6)</td>
<td>(d)</td>
<td>(6 \times 10^8)</td>
</tr>
<tr>
<td>erythritol</td>
<td>(1.1 \times 10^12)</td>
<td>(-133)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>pentaerythritol</td>
<td>(7.4 \times 10^12)</td>
<td>(-133)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>xylitol</td>
<td>(4.0 \times 10^13)</td>
<td>(-140)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>adonitol</td>
<td>(4.7 \times 10^13)</td>
<td>(-147)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>arabinitol</td>
<td>(6.8 \times 10^13)</td>
<td>(-147)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>sorbitol</td>
<td>(6.7 \times 10^16)</td>
<td>(-181)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>mannitol</td>
<td>(1.8 \times 10^17)</td>
<td>(-184)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
<tr>
<td>dulcitol</td>
<td>(9.1 \times 10^16)</td>
<td>(-181)</td>
<td>(e)</td>
<td>(4 \times 10^8)</td>
</tr>
</tbody>
</table>

\(^b \) \(p_L^0 \) from either Piacente et al. (1994, 1993) (giving rise to the lower \(k_h \)) or Knauth and Sabbah (1990a) (giving rise to the higher \(k_h \)).

\(^c \) \(p_L^0 \) is corrected to 298.15 K using \(C_{\rho, L} \) data from Góralski and Tkaczyk (2008) and \(C_{\rho, g} \) estimated with the method of Benson (1976), but the effect is small. d Camenga et al. (1977).

\(^j \) Bone et al. (1983), value at 293 K. k Saxena and Hildemann (1996), value obtained from vapour-liquid equilibrium data.
It is more convenient to use here the alternative HLC definition \(k_{h}^{px} \) instead (Eq. 2). Let us define \(n_{p,s} \) and \(n_{p,s} \) as the number of moles of solute in gas and particulate phase respectively, and \(n_{p,\text{tot}} \) as the total number of moles of the solution. As the particulate solute mole fraction is equal to \(n_{p,s}/n_{p,\text{tot}} \), and using the ideal gas law, Eq. (2) can be transformed into

\[
k_{h}^{px} = \lim_{n_{p,s} \to 0} \frac{n_{p,s}/n_{p,\text{tot}}}{\gamma_{s}^{\infty} - \gamma_{s}^{\infty}} = \left(\frac{f_{p,s}}{1 - f_{p,s}} \right) \frac{V_{\text{air}}}{R T n_{p,\text{tot}}}RT
\]

In the last step Eq. (19) was used. Eq. (22) can be rearranged to

\[
f_{p,s} = \frac{1}{1 + \frac{1}{k_{h}^{px} RT n_{p,\text{tot}}}}
\]

Note that in the particular case of the AS–water system

\[
n_{p,\text{tot}} = n_{p,w} + 3n_{p,AS} + n_{p,s} = n_{p,w} + 3n_{p,AS}
\]

as each molecule of AS dissociates into three ions, and the amount of organic solute is infinitesimally small.

The organic solutes considered are the polyols discussed in this work, and the diacids and hydroxy polyacids treated in our previous work (Compernolle and Müller, 2014). The \(k_{h}^{px} \) of a solute for a solvent consisting of water and a mole fraction \(x_{AS} \) of dissolved AS can be calculated from

\[
k_{h}^{px}(x_{AS}) = k_{h}^{px}(x_{AS} = 0) \frac{\gamma_{s}^{\infty}(x_{AS} = 0)}{\gamma_{s}^{\infty}(x_{AS})} = k_{h}^{px}(x_{AS} = 0) \frac{1}{\gamma_{s}^{\infty}}
\]

with \(\gamma_{s}^{\infty} \) the activity coefficient of the organic solute using the asymmetric convention (i.e. \(\gamma_{s}^{\infty} = 1 \) if the solute is infinitely diluted in pure water). The \(k_{h}^{px}(x_{AS} = 0) \) was taken from Table 5 or Table 3 of Compernolle and Müller (2014) (recommended values only), after the appropriate conversion \(k_{h}^{px} = c_{w}k_{h} \). The \(\gamma_{s}^{\infty}(x_{AS}) \) and \(\gamma_{s}^{\infty}(x_{AS} = 0) \) were calculated with the model AIOMFAC (Zuend et al., 2011), available online (http://www.aiomfac.caltech.edu). This model calculates activity coefficients taking interactions between water, organics and inorganics into account. A very small organic mole fraction \((x_{org} = 10^{-10}) \) was chosen to ensure that \(\gamma_{s}^{\infty}(x_{AS}) \) and \(\gamma_{s}^{\infty}(x_{AS} = 0) \) represent IDACs. As a consequence, the impact of the organic solute on the activities of water and the ions is negligible. Although the activities are estimated and not measured, we note that activity data sets of several AS–water–organic mixtures (organic being a polyol, diacid or hydroxy polyacid) are used to determine AIOMFAC’s parameters (Zuend et al., 2011).

Given a particular \(x_{AS} \), the water activity and hence the relative humidity (RH) are fixed by the AIOMFAC model. \(x_{AS} \) was varied between 0.43 and 0, corresponding to a RH range between 30 and 100 %. Note that pure AS particles have a deliquescence RH (DRH) of 79.5 % and an efflorescence RH (ERH) of \(\sim 35 \% \) (Martin, 2000). The DRH is the equilibrium point below which solid AS is the thermodynamically stable phase and this corresponds to the solubility limit of AS in water. However, depending on the RH history of the particle, a metastable supersaturated solution may instead be present below the DRH. Below the ERH, only solid AS is present in the particulate phase.

The particulate fraction \(f_{p,s} \) of the organic solute depends on the amount of solvent (water + AS) per volume of air. A fixed AS mass concentration of 4 mg m\(^{-3}\) was chosen, typical for inorganic aerosols at mid-latitudes over continents (http://vista.cira.colostate.edu/improve/). As a consequence, upon increasing RH from the ERH to 90 %, the LWC varies between \(10^{-6} \) and \(10^{-5} \) g m\(^{-3}\), a typical range for aqueous aerosol.

Polyols. Due to their low \(k_{h} \), diols do not partition significantly to aqueous aerosol and hence are not included in this analysis. Stereo isomers of xylitol and sorbitol were also not included, given their similar \(k_{h} \) and the fact that AIOMFAC does not distinguish between stereo isomers. For the polyols, AIOMFAC predicts an activity increase with lowering RH (or equivalently increasing the salt concentration) (Fig. 2a). The effect increases with the number of hydroxyl groups. However, this is more than compensated by the concomitant increase in \(k_{h}(x_{AS} = 0) \) (Table 5). The particulate fraction of polyols decreases with decreasing RH both due to the increase in solute activity, and the decrease of total absorbing mass. At RH = 90 % glycerol, with three hydroxyl groups, is 95 % in the gas phase while sorbitol, with six hydroxyl groups, is still 50 % in the particulate phase at RH = 44 %. This is due to the large difference (8 orders of magnitude) of their \(k_{h} \) values.

Linear diacids. Diacids with two (oxalic) up to 10 (sebacic) carbon atoms are considered. Let us neglect acid dissociation for the moment. AIOMFAC’s interaction parameters are negative (stabilizing) between the carboxylic acid group COOH on the one hand, and the ions NH\(_{4}^{+}\) and SO\(_{4}^{2-}\) on the other hand. For the group CH\(_{2}\), these interaction parameters are positive (destabilizing). As a consequence, the activity of the linear diacids with four carbon atoms or more increases with decreasing RH. The activity of oxalic acid, on the other hand, decreases with decreasing RH, while the activity of malonic acid stays roughly constant. Even without taking acid dissociation into account, it is clear that these diacids partition appreciably to the particulate phase (Fig. 2b). Note that for malonic acid, we chose the lower of their \(k_{h}(x_{AS} = 0) \) values (Compernolle and Müller, 2014); the higher value would lead to \(f_{p} \) near unity even without acid dissociation.

Hydroxy polyacids. Citric and tartaric acid exhibit a modest activity increase upon decrease of the RH. On the other hand, they have extremely high \(k_{h}(x_{AS} = 0) \) values (Compernolle and Müller, 2014). Therefore, they will reside almost
Table 6. Activity coefficient methods that best fit the data of Marcolli and Peter (2005). For seven compounds, an alternative fitting is presented.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Fitting method</th>
<th>A_{12}, A_{21}</th>
<th>$\ln \gamma_x^C$</th>
<th>SD($\ln \gamma_w$)</th>
<th>SD (Δw)</th>
<th>Δ_{syst}</th>
<th>σ_{rand}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>Margules</td>
<td>-0.13, -0.38</td>
<td>-0.38</td>
<td>0.0094</td>
<td>0.0033</td>
<td>±0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>Margules</td>
<td>0.038, 0.078</td>
<td>0.078</td>
<td>0.0098</td>
<td>0.0053</td>
<td>±0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>UNIQUAC</td>
<td>-144.83, 207.56</td>
<td>0.22</td>
<td>0.0064</td>
<td>0.0033</td>
<td>±0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>1,2-butanediol</td>
<td>Van Laar</td>
<td>0.40, 1.32</td>
<td>1.32</td>
<td>0.0085</td>
<td>0.0039</td>
<td>±0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>1,3-butanediol</td>
<td>Wilson</td>
<td>1.84, 0.22</td>
<td>0.68</td>
<td>0.0101</td>
<td>0.0053</td>
<td>±0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>Wilson</td>
<td>2.00, 0.18</td>
<td>0.75</td>
<td>0.0083</td>
<td>0.0035</td>
<td>±0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>Margules</td>
<td>0.26, 0.57</td>
<td>0.57</td>
<td>0.0061</td>
<td>0.0030</td>
<td>±0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>1,5-pentanediol</td>
<td>Van Laar</td>
<td>0.37, 1.66</td>
<td>1.66</td>
<td>0.0126</td>
<td>0.0046</td>
<td>±0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>1,2-pentanediol</td>
<td>UNIQUAC</td>
<td>-60.77, 201.91</td>
<td>1.73</td>
<td>0.0127</td>
<td>0.0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-pentanediol</td>
<td>Wilson</td>
<td>9.40, 152.56</td>
<td>2.48</td>
<td>0.0125</td>
<td>0.0053</td>
<td>±0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>1,2-hexanediol</td>
<td>Van Laar</td>
<td>1.70, 0.13</td>
<td>1.33</td>
<td>0.0107</td>
<td>0.0053</td>
<td>±0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>2,4-pentanediol</td>
<td>Margules</td>
<td>0.20, 1.04</td>
<td>1.04</td>
<td>0.0111</td>
<td>0.0073</td>
<td>±0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>1,2-hexanediol</td>
<td>Van Laar</td>
<td>0.63, 3.27</td>
<td>3.27</td>
<td>0.0041</td>
<td>0.0033</td>
<td>±0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>2,5-hexanediol</td>
<td>Van Laar</td>
<td>13.44, 185.39</td>
<td>3.19</td>
<td>0.0063</td>
<td>0.0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-propionate</td>
<td>Wilson</td>
<td>0.37, 1.74</td>
<td>1.74</td>
<td>0.0153</td>
<td>0.0080</td>
<td>±0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>1,7-heptanediol</td>
<td>UNIQUAC</td>
<td>-4.99, 206.56</td>
<td>3.34</td>
<td>0.0158</td>
<td>0.0072</td>
<td>±0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>

*Optimized parameters to use in the activity coefficient expression for $\ln \gamma_w$. b Standard deviation between modelled and observed $\ln \gamma_w$. c Standard deviation between modelled and observed Δw. d Range for $\ln \gamma^C$, obtained by applying systematic shifts of ±0.005 to the Δw data. e Standard deviation on $\ln \gamma^C$, obtained by applying random shifts from a normal distribution with $\sigma = 0.0075$ to the Δw data.

completely in the particulate phase from RH = 100% to the ERH.

Impact of acid dissociation. The effective HLC, $k_h^{p_x,\text{eff}}$, of a polyacid is larger than $k_h^{p_x}$ due to acid dissociation. For a diacid one has

$$ k_h^{p_x,\text{eff}} = \lim_{xH_2A_1-xHA^-+xA_2^-} \frac{xH_2A + xHA^- + xA_2^-}{PH_2A} $$ (26)

with xH_2A, xHA^- and xA_2^- the mole fractions of the undisso-ociated acid, monodissociated acid and twice dissociated acid respectively. Acid dissociation is governed by the acid dissociation constants

$$ K_{a,1} = \frac{\gamma_{H^+}^{xH} \gamma_{HA^-}^{xHA^-} \gamma_{A_2^-}^{xA_2^-}}{\gamma_{H_2A}^{xH_2A}} $$ (27)

$$ K_{a,2} = \frac{\gamma_{H^+}^{xH} \gamma_{A_2^-}^{xA_2^-}}{\gamma_{HA^-}^{xHA^-}} $$

with $K_{a,i}$ mole fraction based acid dissociation constants, and γ^* mole fraction based activity coefficients, with the asymmetric convention (i.e. becoming unity at infinite dilution in pure water). Combining Eqs. (26) and (27) leads to

$$ k_h^{p_x,\text{eff}} = k_h^{p_x} \left(1 + \frac{\gamma_{H_2A}^{xH} \gamma_{HA^-}^{xHA^-} \gamma_{A_2^-}^{xA_2^-}}{\gamma_{H^+}^{xH^+} \gamma_{H_2A}^{xH_2A}} \right) \left(1 + K_{a,1} \frac{\gamma_{H^+}^{xH} \gamma_{HA^-}^{xHA^-} \gamma_{A_2^-}^{xA_2^-}}{\gamma_{H_2A}^{xH_2A}} \right) \left(1 + K_{a,2} \frac{\gamma_{H_2A}^{xH_2A}}{\gamma_{H^+}^{xH^+} \gamma_{A_2^-}^{xA_2^-}} \right)^2 $$ (28)

AIOMFAC does not calculate activity coefficients of ionized organic acids. To describe the ionization in the water–AS–diacid system, we used the models provided at the site of E-AIM (http://www.aim.env.uea.ac.uk/aim/aim.php). Specifically, model IV was used, which is an implementation of the parameterizations of Friese and Ebel (2010) and (for the diacids) of Clegg and Seinfeld (2006). Solid formation (for the diacids) of Clegg and Seinfeld (2006). Solid formation (for the diacids) of Clegg and Seinfeld (2006). Solid formation (for the diacids) of Clegg and Seinfeld (2006).
are predicted to be completely in the aqueous phase from RH = 100 % to the ERH, while the particulate fraction of the other diacids are clearly enhanced (Fig. 2c), compared to the calculation without acid dissociation (Fig. 2b).

6 Discussion and conclusions

6.1 Assessing main uncertainties

HLC of polyols with 2–6 hydroxy groups are derived in this work, using experimental data and thermodynamic relationships. This study complements a previous work (Compernolle and Müller, 2014) where the focus was on diacids and hydroxy polyacids.

An error analysis is performed in Appendix A. The compounds that are liquid at room temperature (most diols and glycerol) have a relatively low uncertainty in k_h (relative standard error 6–28 %, see Table 7). For some compounds, further improvement is possible with more precise p_f^0 data and/or more fine-grained and precise a_w data in the dilute region.

Table 7. Estimated relative standard errors on p_f^0, γ_s^∞ and the resulting relative standard error on k_h. See Sects. A1 and A2.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>SE(p_f^0)</th>
<th>SE(γ_s^∞)</th>
<th>SE(k_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-ethane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,2-propane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,3-propane diol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,2-butanediol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,3-butanediol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>1,4-butanediol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>0.25</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>1,2-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>1,4-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>1,5-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>2,4-pentane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>1,2-hexane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>2,5-hexane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>1,7-heptane diol</td>
<td>0.03</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>glycerol</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>
The compounds that are solid at room temperature, especially the polyols with four or more hydroxy groups, bear a much larger uncertainty in k_h (relative standard error 34–82 %, see Table 8). This is mainly due to the use of high-temperature liquid or solid state vapour pressures. More specifically, it is due to the uncertainty in ΔH_{vap} or ΔH_{sub} in combination with the extrapolation over a large temperature interval. For the hexols, also the uncertainty in heat capacity becomes important, although we note that the error in $C_{p,g}$ is speculative as this property is estimated. Measuring the (solid or liquid state) vapour pressure closer to room temperature will lower these uncertainties.

As noted above, the $C_{p,g}$ values are estimated. Improvement here is possible by using $C_{p,g}$ derived from experiment or from ab initio calculations rather than using a group contribution method. For nonane diol and decane diol, only solubilities from a secondary reference (Merck Millipore) could be retrieved, for which it is difficult to estimate the reliability. New solubility measurements are desirable to obtain a more reliable k_h estimate.

6.2 Comparison with literature

HLC compilations of polyols are provided by e.g. Sander (1999) and Saxena and Hildemann (1996). However, most values in these studies are estimated. Bone et al. (1983) provide HLC measurements for 1,2-ethane diol and 1,3-propane diol (Table 5). Their values are lower but reasonably close (within a factor of 2) to ours. While the majority of HLC values of polyols provided by Saxena and Hildemann (1996) are estimated, a few are derived from vapour–liquid equilibrium data. For 1,2-propane diol, 2,3-butane diol and glycerol, their HLC values are within a factor 3, but for 1,4-butane diol the difference is more than an order of magnitude. In conclusion, for five out of six HLC values, we have a reasonable agreement with the literature values.

The estimated values presented by Saxena and Hildemann (1996) are obtained by a group-contribution method (Suzuki et al., 1992) (values not reproduced in Table 5). For the diols, overestimations by ~ 1 order of magnitude compared to our values are common. For the compounds with three or more hydroxyl groups, the overestimation ranges between 3 (glycerol) and 8 (mannitol) orders of magnitude, showing the limitations of such an estimation method.

6.3 Atmospheric implications

According to the HLC derived in this and the previous work (Compernolle and Müller, 2014), diols will be partially (e.g. 1,2 hexane diol, depending on the droplet size) or completely (e.g. 1,4-butane diol) in the aqueous phase in clouds, while polyols with three or more hydroxyl groups, diacids and hydroxy polyacids will be completely in the aqueous phase. Regarding aqueous aerosol, the sensitivity test performed here using aqueous AS aerosol indicates that polyols with four or more hydroxyl groups are significantly or totally in the particulate phase, depending on the RH. The same holds for the longer linear diacids (succinic and higher). The shorter linear diacids (oxalic and malonic) and the hydroxy polyacids (citric and tartaric) are completely in the particu-
late phase both at lower and higher RH, due to (i) their relatively high acid dissociation constants and/or (ii) stabilizing or only mildly destabilizing interactions with AS and/or (iii) very high k_h values.

Note that this analysis is only applicable for aqueous AS aerosol in the limiting case of a small concentration of organics. If e.g. a separate organic phase is present in the aerosol, partitioning to this phase should be taken into account as well.

Bao et al. (2012) measured gas particle partitioning of diacids at a site in Japan in different seasons. According to this study, both particulate and gaseous fractions are significant, and RH influences the partitioning. Xie et al. (2014) measured gas particle partitioning of 2-methyl tetrols at a site in Denver and found about equal particulate and gaseous fractions. Our sensitivity test, based on a simple AS–water aerosol system, cannot be quantitatively compared with these studies, but does show that partitioning to the particulate phase is important for diacids and tetrols.

Table 9. p^0_0 calculations for erythritol, xylitol and sorbitol, with three vapour pressure estimation methods (Nannoolal et al., 2008; Moller et al., 2008; Myrdal and Yalkowsky, 1997) available at http://www.aim.env.uea.ac.uk/aim/aim.php.

<table>
<thead>
<tr>
<th>method</th>
<th>erithritol</th>
<th>xylitol</th>
<th>sorbitol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nannoolal</td>
<td>T_b/K adj.a</td>
<td>612</td>
<td>634</td>
</tr>
<tr>
<td>$p^0_0(T_{ref})/Pa$</td>
<td>2.2×10^{-5}</td>
<td>3.0×10^{-7}</td>
<td>2.5×10^{-10}</td>
</tr>
<tr>
<td>Moller</td>
<td>T_b/K adj.a</td>
<td>649</td>
<td>705</td>
</tr>
<tr>
<td>$p^0_0(T_{ref})/Pa$</td>
<td>1.5×10^{-5}</td>
<td>2.6×10^{-7}</td>
<td>1.8×10^{-10}</td>
</tr>
<tr>
<td>Myrdal–Yalkowsky</td>
<td>T_b/K adj.a</td>
<td>656</td>
<td>703</td>
</tr>
<tr>
<td>$p^0_0(T_{ref})/Pa$</td>
<td>9.7×10^{-5}</td>
<td>5.2×10^{-6}</td>
<td>5.9×10^{-8}</td>
</tr>
</tbody>
</table>

a Hypothetical boiling point, adjusted such that the experimental p^0_0 at T_{meas} (Barone et al., 1990) is reproduced. These experimental ($T_{meas}/K, p^0_0/Pa$) data points are (412, 8.6), (433, 5.5) and (477, 6.8) for erythritol, xylitol and sorbitol respectively.
Appendix A: Error analysis

In this section we identify the main uncertainties contributing to the k_h values, as well as the overall uncertainty. From the error propagation rule (Bevington, 2003), and Eqs. (4) and (8), the standard error (SE) on k_h can be derived:

$$\frac{SE[k_h]}{k_h} \approx \sqrt{\left(\frac{SE[p^0]}{p^0_L}\right)^2 + \left(\frac{SE[\gamma^\infty]}{\gamma^\infty}\right)^2}$$ \quad (A1)

$$\frac{SE[k_h]}{k_h} \approx \sqrt{\left(\frac{SE[p^0]}{p^0_C}\right)^2 + \left(\frac{SE[x^\text{sat}]}{x^\text{sat}}\right)^2 + \left(\frac{SE[\gamma^\infty]}{\gamma^\infty}\right)^2}.$$ \quad (A2)

In Eq. (A2), the covariance between x^sat and $\gamma^\infty/\gamma^\text{sat}$ is neglected. Such covariance exists in principle, as x^sat enters the formula for deriving $\gamma^\infty/\gamma^\text{sat}$ (Eq. 18). However, due to the low error on x^sat (see Sect. A3), this can be neglected. Note that it also follows from the error propagation rule (Bevington, 2003) that $\frac{SE[u]}{u} = SE[\ln u]$.

We tried to obtain the uncertainties from the original studies. This is hindered by the fact that these errors are not always reported, or it is not always made clear what they exactly represent (e.g. once or twice the standard deviation). Discrepancies between results of different research groups are often larger than the reported errors of individual studies. Our error analysis is mostly based on this inter-laboratory error.

From Eqs. (A1) and (A2), it is clear that relative standard errors (i.e. $SE[u]/u$) are relevant. They are cited in the text as percentages. To estimate how much data of two data sources 1 and 2 disagree, we calculated the root mean squared relative difference (RMSRD)

$$\text{RMSRD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{u_{1,i} - u_{2,i}}{u_{1,i} + u_{2,i}}\right)^2}.$$ \quad (A3)

with u representing a physical quantity and i running over N data points (obtained by varying e.g. the temperature, the water content, or the molecule type). If we can consider the data of source 1 as more reliable than of source 2, the RMSRD is used to assign a relative standard error to source 2. Otherwise the RMSRD is assigned as relative standard error to both data sources.

Sometimes the absolute error is more relevant. To quantify the difference between two data sources, we use therefore the mean deviation (MD) and the root mean squared difference (RMSD):

$$\text{MD} = \frac{1}{N} \sum_{i=1}^{N} (u_{1,i} - u_{2,i})$$ \quad (A4)

$$\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_{1,i} - u_{2,i})^2}. \quad (A5)$$

An example where the absolute error is more relevant is for water activity data a_w in function of water content, which is used as input to calculate γ^∞ and $\gamma^\infty/\gamma^\text{sat}$ (Sects. A2 and A3). Of course a_w of both data sources was evaluated at the same water content, with interpolation of data points if necessary.

A1 Liquid vapour pressure

Verevkin (2007, 2004); Verevkin et al. (2009); Toktonov (2009) provide the bulk of p^0_L data for diols used in Table 5 (eight compounds in total). They report that their measurements are “reliable within 1–3 %” and point to a good consistency with other literature data. An additional advantage is that the measurements are performed at or near room temperature. We consider the data of this group the most reliable for diols – based on our experience with other vapour pressure data of this group, e.g. on aldehydes (Verevkin et al., 2003) and mono-alcohols (Kulikov et al., 2001; Verevkin and Schick, 2007) – and will use the data as a benchmark for other p^0_L data of diols. Regarding the triol glycerol, Cammena et al. (1977) reports an accuracy of “somewhat less” than 0.6 % and the authors state consistency with other work. Their measurements also include room temperature. We consider this work as reliable as well. We assign to all p^0_L data with label “a” and “d” in Table 5 a relative standard error of 2 %.

The p^0_L data of four diols used in Table 5 are from the compilation Engineering Sciences Data Unit Ltd (1995). Comparing p^0_L data of a set of eight diols with measurements of Verevkin and co-workers (which we consider more reliable), we find a RMSRD of 25 %. This is therefore assigned as relative standard error to all diols in Table 5 with label “b”.

For 1,7-heptane diol, we have two data sources: Knauth and Sabbah (1990a) and Piacente et al. (1993). Comparing room-temperature data of six diols from Knauth and Sabbah on the one hand (Knauth and Sabbah, 1990b, c) and from Verevkin and co-workers on the other hand (Verevkin, 2007, 2004; Verevkin et al., 2009; Toktonov, 2009), we obtain again a RMSRD of 25 % and assign this as the relative standard error to p^0_L. The data of Piacente et al. (1993) could not be directly compared with those of Verevkin and co-workers because the two groups did not measure the same diols. We assign the same relative standard error of 25 % to their p^0_L data due to lack of alternative.
A2 Infinite dilution activity coefficient

The infinite dilution activity coefficient is calculated from a_w data using Eq. (14). If these data were sufficiently fine-grained, precise and cover the entire x_w range from 0 to 1, a numerical integration of the integral in Eq. (14) would be appropriate. However, if this is not the case, it might be better to fit the a_w data with a reasonable model. The following models for γ_w^∞ were considered in this work: Margules, Van Laar, Wilson and UNIQUAC (Carlson and Colburn, 1942; Prausnitz et al., 1999), as they were derived from physical considerations. These models are reproduced below:

Margules: $f(x_1, A_{12}, A_{21}) = (A_{12} + 2(A_{21} - A_{12})x_1)x_1^2$ \hspace{1cm} (A6)

Van Laar: $f(x_1, A_{12}, A_{21}) = A_{12}\frac{A_{21}x_2}{A_{12}x_1 + A_{21}x_2}$ \hspace{1cm} (A7)

Wilson: $f(x_1, A_{12}, A_{21}) = -\ln(x_1 + A_{12}x_2)$ \hspace{1cm} (A8)

UNIQUAC: $f(x_1, A_{12}, A_{21}) = \ln\frac{\Phi_1}{x_1} + \frac{\varepsilon}{2}q_1\ln\frac{\theta_1}{\Phi_1}$

$\Phi_2\left(\frac{l_1 - r_1}{r_2}\right) - q_1\ln\left(\frac{\theta_1 + \theta_2e^{-A_{21}/T}}{\theta_2 + \theta_1e^{-A_{21}/T}}\right) + \theta_2e^{-A_{21}/T} - \frac{e^{-A_{21}/T}}{\theta_2 + \theta_1e^{-A_{21}/T}}$ \hspace{1cm} (A9)

with x_1 the mole fraction of the first component (here water), $x_2 = 1 - x_1$ the mole fraction of the second component (here the solute), and A_{12}, A_{21} the parameters to fit. To determine A_{12}, A_{21}, a least square regression was performed, minimizing the difference between experimental and modelled $\ln\gamma_w$. For a detailed overview of the quantities used in the UNIQUAC equation, see Prausnitz et al. (1999). Errors in γ_w^∞ arise from uncertainty and sparsity in the a_w data, but also from a suboptimal model choice. This is especially important if no data in the highly dilute concentration range are available.

All the γ_w^∞ derived in this work are based – partially or totally – on the a_w from Marcolli and Peter (2005). This work presents a_w data, relatively coarse-grained, with a x_w range typically between 0.1 and 0.95. The main limitation of this data source is that no data in the highly dilute range are available. We present here first an error analysis for all the 14 diols from Table 2, but using the data of Marcolli and Peter (2005) only. The four activity coefficient expressions were all tested, and the one that fitted the data best was chosen. The results are presented in Table 6.

Marcolli and Peter (2005) report that the a_w data are “accurate within ±0.015”, as specified by the employed instrument, but this does not make clear whether the error is random and/or systematic, or whether this range corresponds to e.g. one or two standard deviations. If we assume that the selected fitting model is correct and any systematic error in a_w is absorbed in the fitting parameters, then any remaining deviation between modelled and experimental values should be due to the random error in the experiment (Bevington, 2003). Standard deviations between modelled and observed a_w vary between 0.003 and 0.009 (Table 6). We drew repeatedly random errors from a normal distribution with a standard deviation of 0.0075 (corresponding to 2σ = 0.015), using the python scipy.stats module (Jones et al., 2001) and applied these to the a_w data. This resulted in a distribution of γ_w^∞ values. A relative standard error between 2% and 14% on γ_w^∞ is obtained in this way. We note however, that this error depends also on the selected model, i.e. γ_w^∞ based on Margules models tend to be the least sensitive to the random shifts, while γ_w^∞ based on Van Laar and Wilson models are the most sensitive.

Systematic errors in a_w can be estimated by comparing with other data sources (Romero and Páez, 2006; Borghesani et al., 1989). The a_w data of Marcoli and Peter (2005) are typically higher than from the other data sources, with a MD of 0.005. We applied systematic shifts of ±0.005 on the a_w data of Marcoli and Peter (2005). This had a minor impact on γ_w^∞, between 2 and 6%.

We note that we had expected that the largest γ_w^∞ (from 1,7-heptane diol and 1,2-hexane diol) would exhibit the largest sensitivity on these random and systematic shifts. This turned out not to be true, however.

Errors due to a suboptimal model choice are more difficult to quantify. Per compound, the other three activity coefficient models (apart from the “best” one) were also considered. If the fitting was considerably worse, the model was rejected because it was probably not appropriate. If the fitting gave essentially the same γ_w^∞ result, it was also not retained, because in that particular case the models were not truly different. In this way, for seven diols γ_w^∞ from an alternative model were selected (presented in Table 6). The RMSRD between γ_w^∞ of the “best” model and “alternative” model was 12%. The most important reason for the discrepancy between the activity coefficient models was their behaviour at the highly dilute region, where no data were used to constrain them.

For eight diols in Table 2, also data from two other sources (Borghesani et al., 1989; Romero and Páez, 2006) were available. Note that Borghesani et al. (1989) do not provide the data points but only fitted expressions. These two data sources are very precise; e.g. Romero and Páez (2006) report a relative uncertainty in a_w of 0.005% or less. They are also in good agreement with each other; the difference in a_w is typically 0.001 or less. These data cover the highly dilute region (x_w typically in the range between 0.93 and 0.996) and therefore enable us to largely correct for the error due to a suboptimal model choice. Using these data as well, more accurate estimations of γ_w^∞ were made (Table 2). Comparing those with the γ_w^∞ derived only from the Marcoli and
Peter (2005) data, a RMSRD of 13 % was obtained, in good agreement with our above estimate of the error due to a suboptimal model choice. Therefore, we assign to all \(\gamma_s^\infty \) where only data from Marcoli and Peter (2005) are used, a standard error of 13 %.

Practically, the derivation of \(\gamma_s^\infty \) when multiple data sources are available was done in the following way. The integral in Eq. (14) was split into two parts:

\[
\ln \gamma_s^\infty = \sum_{i=0}^{\infty} \frac{\ln \gamma_w(x_w)}{(1-x_w)^{\gamma}} dx_w + \frac{1}{(1-x_w)^{\gamma}} dx_w \quad (A10)
\]

where \(\overline{x}_w \) marks the start of the highly dilute region for which data of Borghesani et al. (1989) and Romero and Páez (2006) are available. For the region \([0, \overline{x}_w] \), the data from Borghesani et al. (1989) and Romero and Páez (2006) were integrated. This was attained either by a numeric integration, or by fitting an activity coefficient expression over this small region, or – if only data of Borghesani et al. (1989) were available – the analytic expression given in this study was used. We assign to these more accurate estimations of \(\gamma_s^\infty \) a small standard error of 5 %.

For the two triols in Table 2, the data of Marcoli and Peter (2005) and of Ninni et al. (2000) and Scatchard et al. (1938) were combined. There is a good agreement between the data; e.g. Ninni et al. (2000) report that for glycerol, there is only 0.1 % relative deviation between their \(a_w \) data and those of Scatchard et al. (1938). Also here we assign a small standard error of 5 % on \(\gamma_s^\infty \).

A3 Solubility

As some solubility data of the polyols are from literature compilations, uncertainties are not always available. But when reported, they are typically very low. For xylitol, Wang et al. (2013) reported an error of no more than 0.5 % on \(x_s^\text{sat} \). For pentaerythritol, a 0.3 % error can be derived from the study of Cheon et al. (2005) and 0.15 % from the study of Chianese et al. (1995). Higher errors are found when comparing different studies. For erythritol, Hao et al. (2005) report a 4 % uncertainty by comparing with literature data. For pentaerythritol, we found by comparing data of Cheon et al. (2005), Chianese et al. (1995) and Mullin (2001) that the RMSRD on room temperature \(x_s^\text{sat} \) is 5 %. Compared to the estimated errors on solid state pressure (see Sect. A5), these errors are very minor. We assign a standard error of 5 % to all solubility values, except for those of 1,9-nonane diol and 1,10-decane diol. For these latter two compounds, there are two issues. First, the data are from a secondary reference (Merck Millipore; http://www.merckmillipore.com/) from which it is difficult to access the reliability. Second, the solubility is not reported at the reference temperature of 298.15 K but at 293.15 K instead. The temperature dependence of solubility can be described by a van’t Hoff relation (Atkins and de Paula, 2006):

\[
\frac{d \ln x_s^\text{sat}}{d (1/T)} = -\frac{\Delta H_{\text{Cr-\text{aq}}}^\text{H}}{R}.
\]

The \(\Delta H_{\text{Cr-\text{aq}}}^\text{H} \) is not known for these two diols. For monoalcohols it can be either positive or negative and is (in absolute value) in the range 0–30 kJ mol\(^{-1}\) (based on data from Mackay et al., 2006). Based on this, we estimate roughly the standard error on \(x_s^\text{sat} \) at 298.15 K as 15 %.

A4 Activity coefficient ratio

The activity coefficient ratio \(\gamma_s^\infty / \gamma_s^\text{sat} \) is calculated from \(a_w \) data. The error on \(\gamma_s^\infty / \gamma_s^\text{sat} \) depends on the solubility. If the solubility is very low, \(\gamma_s^\infty / \gamma_s^\text{sat} \) will necessarily be very close to unity and the uncertainty on \(\gamma_s^\infty / \gamma_s^\text{sat} \) will vanish (see Eq. 18). For all compounds with \(x_s^\text{sat} < 0.1 \) we neglect the error. Xylitol, adonitol, arabinitol and sorbitol have relatively high solubilities (\(x_s^\text{sat} \approx 0.2 \)) and \(\gamma_s^\infty / \gamma_s^\text{sat} \) considerably deviating from 1 (Table 4). For xylitol and sorbitol, precise \(a_w \) data are available (Nini et al., 2000; Comesaña et al., 2001; Bower and Robinson, 1963); e.g. Nini et al. (2000) report a reproducibility of \(\pm 0.001 \) \(a_w \) units. There is a good agreement between the data sources. For sorbitol, there is a near perfect agreement between the data sets of Comesaña et al. (2001) and Bower and Robinson (1963) (no significant MD, and a RMSD of 0.0005). The RMSD between the \(a_w \) data of Nini et al. (2000) on the one hand, and the data of Comesaña et al. (2001) and Bower and Robinson (1963) on the other hand, for both xylitol and sorbitol, is 0.003. This is similar to the standard deviation between modelled \(a_w \) and experimental \(a_w \) (0.0015 for sorbitol, 0.003 for xylitol). Therefore, we applied random shifts from a normal distribution with a standard deviation of 0.003 to \(a_w \) data. This resulted in a 5 % uncertainty on \(\gamma_s^\infty / \gamma_s^\text{sat} \) for sorbitol and a 2.5 % uncertainty for xylitol. We adopted 5 % as a relative standard error for the \(\gamma_s^\infty / \gamma_s^\text{sat} \) of xylitol and sorbitol (Table 8).

Chirife et al. (1984) presented one-parameter fittings of the form \(\ln \gamma_w = \exp(-A x_s) \), from which \(\gamma_s^\infty / \gamma_s^\text{sat} \) can be derived. Using Eq. (18), one has

\[
\ln \frac{\gamma_s^\infty}{\gamma_s^\text{sat}} = -A x_s \text{sat} (2 - x_s^\text{sat}).
\]

For adonitol and arabinitol, these are the only data available. \(\gamma_s^\infty / \gamma_s^\text{sat} \) values derived in this way are likely more uncertain than the values given above for sorbitol and xylitol. For these two compounds, we compared our own \(\gamma_s^\infty / \gamma_s^\text{sat} \) values (in Table 4) with the values obtained using the one-parameter fittings of Chirife et al. (1984) and found a RMSRD of 16 %. Therefore, we assign a relative standard error of 16 % to the \(\gamma_s^\infty / \gamma_s^\text{sat} \) of adonitol and arabinitol (Table 8).
A5 Derivation of sublimation data

Starting from high-temperature solid state pressure data, and heat capacity data, the solid state pressure p^0_{Cr} at $T_{ref} = 298.15$ K is given by

$$\ln p^0_{Cr}(T_{ref}) = A + B, \quad \text{with}$$

$$A = \ln p^0_{Cr}(T_{meas}) - \frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{meas}} \right)$$

$$\Delta H_{sub}(T_{meas})$$

$$B = \frac{1}{R} \int_{T_{meas}}^{T_{ref}} \left(C_{p,g} - C_{p,L} \right) \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) dT.$$ (A15)

In the case that the high-temperature data corresponds to liquid vapour pressure p^0_L, the relation is

$$\ln p^0_L(T_{ref}) = A + B + C, \quad \text{with}$$

$$A = \ln p^0_L(T_{meas}) - \frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{meas}} \right)$$

$$\Delta H_{vap}(T_{meas})$$

$$B = \frac{1}{R} \int_{T_{meas}}^{T_{ref}} \left(C_{p,g} - C_{p,L} \right) \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) dT$$

$$+ \frac{1}{R} \int_{T_{fus}}^{T_{ref}} \left(C_{p,g} - C_{p,Cr} \right) \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) dT$$

$$C = -\frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{fus}} \right) \Delta H_{fus}(T_{fus}).$$ (A19)

Uncertainties on terms A (involving high temperature vapour pressure data), B (involving heat capacity data) and, depending on the case, C (involving fusion data) will contribute to the error on $\ln p^0_{Cr}(T_{ref})$:

$$\frac{\text{SE}[p^0_{Cr}(T_{ref})]}{p^0_{Cr}(T_{ref})} = \text{SE}[\ln p^0_{Cr}(T_{ref})]$$

$$= \sqrt{\text{SE}[A]^2 + \text{SE}[B]^2 + \text{SE}[C]^2}. \quad (A20)$$

In the next sections these three uncertainties are analysed.

A5.1 High-temperature p^0_{Cr} and p^0_L data

To simplify the discussion, in this section, $p^0, \Delta S$ and ΔH stand for either $p^0_{Cr}, \Delta S_{sub}$ and ΔH_{sub} or $p^0_L, \Delta S_{vap}$ and ΔH_{vap} respectively, depending on whether the compound is a solid or a liquid at T_{meas}. Term A is then given by

$$A = \ln p^0(T_{meas}) - \frac{1}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{meas}} \right) \Delta H(T_{meas}). \quad (A21)$$

The standard error of A, from the error propagation rule (Bevington, 2003) (neglecting the uncertainty in T_{meas}), is equal to

$$\text{SE}(A) = \sqrt{\left(\text{SE}[p^0(T_{meas})] \right)^2 + \left[\frac{\text{SE}[^{\Delta}H(T_{meas})]}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{meas}} \right) \right]^2}. \quad (A22)$$

In the study of Knauth and Sabbah (1990a), $p^0(T_{meas})$ and $\Delta H(T_{meas})$ are measured separately and at one fixed temperature. In the other studies, however (Nitta et al., 1951; Bradley and Cotson, 1953; Barone et al., 1990; Nitta et al., 1950; Piacente et al., 1993, 1994), ΔH was derived from a linear regression of $\ln p^0$ vs. $1/T$. Over the relatively small temperature interval, the temperature dependence of ΔH can be neglected (Clausius–Clapeyron relation, see e.g. Atkins and de Paula, 2006). Eq. (i) still applies, if p^0_L is taken at the centre of the measurement interval (Ramsey and Shafer, 1997). T_{meas} then corresponds to the centre of the temperature interval (see Table 3) and is presented in Table 8. Most high-temperature p^0 data are from Piacente and co-workers, covering both diols and polyols with four or more hydroxyl groups (Piacente et al., 1993, 1994; Barone et al., 1990).

As before (see Sect. A1), we estimate $\text{SE}[^{\Delta}H(T_{meas})]/p^0(T_{meas})$ as 0.25 for the data of Knauth and Sabbah (1990a) and Piacente et al. (1993, 1994). By comparing ΔH data on diols from Knauth and Sabbah (1990a) and Piacente et al. (1994), we find a RMSD of 3.5 kJ mol\(^{-1}\), which we adopt as $\text{SE}[^{\Delta}H(T_{meas})]$ for both data sources. As is often the case when comparing different data sources, this error is higher than the errors reported in the individual studies themselves (typically 1–2 kJ mol\(^{-1}\)). For large differences between T_{ref} and T_{meas}, $\text{SE}(A)$ is determined mainly by uncertainty in the enthalpy term. This is the case for the polyols with four or more hydroxyl groups. The largest $\text{SE}(A)$, about 0.6, is obtained for the hexols (Table 8).

Most data on polyols with four or more hydroxyl groups is from Piacente and co-workers (Barone et al., 1990). There are a few other, much older studies (Nitta et al., 1950, 1951; Bradley and Cotson, 1953) on erythritol and penterythritol, with ΔH values strongly deviating (15–30 kJ mol\(^{-1}\) lower) from the data of Barone et al. (1990). These large discrepancies cannot be understood from the reported precisions, or from the error of 3.5 kJ mol\(^{-1}\) adopted above. We think that this points to problems with one or more of the experimental studies, rather than to a typical experimental uncertainty. We judge the data of Piacente and co-workers as the more reliable, for the following reasons. (i) A relatively good agreement in ΔH of diols with Knauth and Sabbah (1990a) (Piacente et al., 1993, 1994). (ii) Piacente and co-workers also present p^0_L measurements on diols using another technique, and with comparable results (Piacente et al., 1993). (iii) Consistency, in the sense that the high-temperature p^0_L data of stereo-isomers of polyols are comparable, as one would expect (Barone et al., 1990). (iv) Compared to the older studies,
those of Piacente and co-workers employ more data points and a larger temperature interval. Obviously, more \(p^0 \) measurements on polyols with four or more hydroxyl groups are desirable.

A5.2 Heat capacity data

Assuming that the error on heat capacity is temperature independent, one derives from Eq. (1) for the standard error on term \(B \) (if no fusion point is involved)

\[
\text{SE}[B] = \frac{1}{R} \left[\ln \frac{T_{\text{meas}}}{T_{\text{ref}}} - \frac{1}{T_{\text{ref}}} (T_{\text{ref}} - T_{\text{meas}}) \right]
\]

\[
\sqrt{\text{SE}[C_{p,g}]^2 + \text{SE}[C_{p,ct}]^2}
\]

If there is a fusion point, starting from Eq. (A19), the standard error on term \(B \) becomes

\[
\text{SE}[B] = \frac{1}{R} \left[\ln \frac{T_{\text{fus}}}{T_{\text{meas}}} - \frac{1}{T_{\text{ref}}} (T_{\text{fus}} - T_{\text{meas}}) \right]
\]

\[
\sqrt{\text{SE}[C_{p,g}]^2 + \text{SE}[C_{p,ct}]^2 + \frac{1}{R} \left[\ln \frac{T_{\text{fus}}}{T_{\text{meas}}} - \frac{1}{T_{\text{ref}}} (T_{\text{fus}} - T_{\text{meas}}) \right]^2}
\]

Most \(C_{p,L} \) and \(C_{p,ct} \) data we use is from Tong and co-workers (Tong et al., 2007, 2008, 2009, 2010b, a), as it covers a wide range of polyols and temperatures. Quoted errors on the experimental values of \(C_{p,L} \) and \(C_{p,ct} \) are very low, e.g. 0.2% for those of Tong and co-workers. This corresponds to about 0.5 J/(Kmol) error on the heat capacity value. However, the discrepancy between data of different groups is much larger. We compared the data of Tong and co-workers with other data where possible: for erythritol (Lopes Jesus et al., 2005; Spaght et al., 1931), sorbitol (Lian et al., 1982) and mannitol (Lian et al., 1982; Spaght et al., 1931). Based on the RMSD of the data, we assign \(\text{SE}[C_{p,L}] = \text{SE}[C_{p,ct}] = 20 \) J/(Kmol), much larger than the reported errors. By taking identical errors for \(C_{p,L} \) and \(C_{p,ct} \) (there are not enough data to treat them separately), Eq. (A24) simplifies to Eq. (A23).

In a few cases (arabinitol, dulcitol, liquid state mannitol) we did not found heat capacity data in the appropriate temperature range and we took heat capacity data of a stereo-isomer instead (see Table 3). To test the validity of this assumption, we compared heat capacity data at or above room temperature of stereo-isomers from the same research group. Regarding the liquid state, \(C_{p,L} \) data of the stereo-isomers erythritol and threitol (Lopes Jesus et al., 2005), and of the stereo-isomers xylitol and adonitol (Tong et al., 2007, 2010b) differ by less than 2 J/(Kmol). This justifies the approximations \(C_{p,L}(\text{arabinitol}) \approx C_{p,L}(\text{xylitol}), C_{p,L}(\text{dulcitol}) \approx C_{p,L}(\text{manitol}) \approx C_{p,L}(\text{sorbitol}) \) applied in this work. Regarding the solid state, we compared \(C_{p,ct} \) of stereo-isomers erythritol and threitol (Lopes Jesus et al., 2005), xylitol and adonitol (Tong et al., 2007, 2010b), mannitol and sorbitol (Tong et al., 2010a, 2008; Lian et al., 1982), only taking into account the data at \(T \geq T_{\text{ref}} \) (as this is the most relevant for our work) and found a RMSD of 9 J/(Kmol). This is larger than for the liquid state but still smaller than the discrepancies between different works on the same molecule. Moreover, for the low-temperature (88–291 K) \(C_{p,ct} \) data for the stereo-isomers dulcitol and mannitol (Parks and Huffman, 1926; Parks and Anderson, 1926), the RMSD was only 2 J/(Kmol). Therefore, also the approximations \(C_{p,ct}(\text{arabinitol}) \approx C_{p,ct}(\text{xylitol}) \) and \(C_{p,ct}(\text{dulcitol}) \approx C_{p,ct}(\text{mannitol}) \) seem to be justified.

Regarding \(C_{p,g} \), the error is difficult to quantify as this value is not measured but obtained by the Benson group contribution method. Poling et al. (2001) quote a relative error of 1% for this method, but as polyols are under-represented in the fitting set of this method, this is probably not realistic. The method of Domalski and Hearing (1993) is a very close relative to the Benson group contribution method (although limited to room temperature), yielding very similar results for \(C_{p,g} \). Importantly, this method also estimates \(C_{p,L} \) and \(C_{p,ct} \). Comparing \(C_{p,ct} \) for erythritol, xylitol and sorbitol from Tong and co-workers with estimations by the method of Domalski and Hearing (1993) yields a RMSD of 20 J/(Kmol). We make now the assumption that this error is applicable to \(C_{p,g} \) as well. Hence we assign \(\text{SE}[C_{p,g}] = 20 \) J/(Kmol).

For the diols, where \(T_{\text{meas}} \) is relatively close to \(T_{\text{ref}}, \text{SE}[B] \) is small (1–7%), but for the compounds with four or more hydroxyl groups it becomes more important – over 40% for the hexols (see Table 8).

A5.3 Fusion data

In this section the error due to the term \(C = - \frac{1}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T_{\text{fus}}} \right) \Delta H_{\text{fus}}(T_{\text{fus}}) \) in Eq. (A17) is estimated. From the error propagation rule the standard error can be derived as

\[
\text{SE}[C] = \sqrt{\text{SE}[T_{\text{fus}}]^2 \left(\frac{\Delta H_{\text{fus}}}{T_{\text{fus}}^2 R} \right)^2 + \text{SE}[\Delta H_{\text{fus}}]^2 \left[\frac{1}{R} \left(\frac{1}{T_{\text{ref}}} - \frac{1}{T_{\text{fus}}} \right) \right]^2}
\]

Fusion data were collected from Tong et al. (2007, 2008, 2009, 2010b, a), Barone et al. (1990), Badea et al. (2014) and Knauth and Sabbah (1990a). The selected \(T_{\text{fus}} \) are presented in Table 8. Reported errors in these works are typically 0.1 K for \(T_{\text{fus}} \) and 0.1–0.3 kJ mol\(^{-1}\) for \(\Delta H_{\text{fus}} \). However, comparing the data between the different references reveals larger uncertainties: a standard deviation of 2.8 K for \(T_{\text{fus}} \) and 2.2 kJ mol\(^{-1}\) for \(\Delta H_{\text{fus}} \). Using these errors, \(\text{SE}(C) \) ranges from 0.13 for nonane diol to 0.33 for dulcitol (see Table 8).

Atmos. Chem. Phys., 14, 12815–12837, 2014 www.atmos-chem-phys.net/14/12815/2014/
A6 Overall discussion of errors

Table 7 gives an overview of the estimated relative standard errors on p_0^L, γ_∞^s and the derived relative standard error on k_h. This applies to the compounds which are liquid at room temperature, i.e. most diols discussed in this work and glycerol. The relative standard error on k_h ranges between 6% and 30%.

Table 8 gives the different error contributions when the compound is solid at room temperature, and the resulting relative standard error on k_h. In all cases, SE(A) is the dominant error contribution. For all polyols with four or more hydroxyl groups, this is caused by the large difference between T_{meas} and T_{ref} and the uncertainty on $\triangle H_{fus}$. The estimated relative standard error on k_h ranges between 30 and 80%.

Appendix B: Alternative method to estimate $p_{Cr}^0(T_{ref})$ data from high-temperature p_L^0 data

As is clear from Sect. A, using high-temperature p_L^0 data at T_{meas} far above T_{ref} contributes the largest uncertainty to the derived room temperature p_{Cr}^0 and k_h data. One of the reviewers suggested an alternative approach. It can be described as follows:

1. Select a vapour pressure estimation method that uses a boiling point as input (e.g. Nannoolal et al., 2008).
2. Adjust the boiling point such that the experimental high-temperature p_L^0 data at T_{meas} are reproduced.
3. With this setting, estimate the subcooled p_L^0 at T_{ref}.
4. Use triple point or fusion point data to calculate p_{Cr}^0 at T_{ref} (Prausnitz et al., 1999; Compernolle et al., 2011, Eq. (1)).

We applied this procedure up to step 3. The selected vapour pressure estimation methods are those of Nannoolal et al. (2008), Moller et al. (2008) and Myrdal and Yalkowsky (1997), available at the site E-AIM (http://www.aim.env.uea.ac.uk/aim/aim.php), and applied to the compounds erythritol, xylitol and sorbitol. The boiling point was adjusted until the p_L^0 data at T_{meas} of Barone et al. (1990) could be reproduced, and p_L^0 at T_{ref} calculated. The results are presented in Table 9. The method of Myrdal and Yalkowsky (1997) gives much higher $p_L^0(T_{ref})$ estimations than the other two methods; for sorbitol it is more than two orders of magnitude higher. The $p_L^0(T_{ref})$ estimations using the methods of Nannoolal et al. (2008) and of Moller et al. (2008) are within a factor of 2. However, the adjusted boiling point varies strongly between both methods (almost 100 K for sorbitol), indicating also problems here.

From the theses describing these two methods (Nannoolal, 2006; Moller, 2007) it can be deduced that to derive these methods, only compounds were selected where also a normal boiling point is available. This excludes the polyols with four or more hydroxyl groups. Therefore, these methods may not be well suited to calculate the vapour pressure of these kind of compounds. In fact, the original version of the method of Moller et al. (2008) contained a bug that we pointed out (Compernolle et al., 2010), showing up only for highly polyfunctional compounds, and giving very unrealistic p_L^0 values. While this bug has been corrected since then, it does indicate that the method was not devised for highly polyfunctional compounds.

In conclusion, we do not think that this approach is a good alternative to obtain p_{Cr}^0 at T_{ref}.
Acknowledgements. This work was supported by the project BIOSOA (SD/CS/05A, 2011–2014) funded by the Belgian Science Policy Office.

Edited by: D. Topping

References

Sander, R.: Compilation of Henry's Law Constants for Inorganic
Romero, C. M., Páez, M. S., Miranda, J. A., Hernández, D. J., and
Romero, C. M. and Páez, M. S.: Isopiestic determination of osmotic
Piacente, V., Ferro, D., and Della Gatta, G.: Vaporization en-
Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic prop-
Parks, G. S. and Huffman, H. M.: Thermal data on organic com-
Parks, G. S. and Anderson, C. T.: Thermal data on organic
Paraskevas, P. D., Sabbe, M. K., Reyniers, M.-F., Papayan-
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group
12836 S. Compernolle and J.-F. Müller: Henry's law constants of polyols
Atmos. Chem. Phys., 14, 12815–12837, 2014 www.atmos-chem-phys.net/14/12815/2014/
Robinson, R. A. and Stokes, R. H.: Activity coefficients in aque-
Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G.:
Poling, B. E., Prausnitz, J. M., and O'Connell, J. P.: The proper-
Stein, S. and Brown, R.: NIST Chemistry WebBook, NIST Stan-
Spaght, M. E., Thomas, S. B., and Parks, G. S.: Some
components analysis to calculate Henry's constant from molecular
Toktonov, A. V.: Thermochemical insight into “green chemistry”
Tong, B., Tan, Z., Zhang, J., and Wang, S.: Thermodynamic inves-
Tong, B., Yu, Y., Tan, Z.-C., Meng, C.-G., Cui, L.-J., Xiao, G., and Liu, R.-B.: Thermodynamic investigation of several natural polyols (IV): heat capacities and thermody-
S. Compernolle and J.-F. Müller: Henry’s law constants of polyols

