Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 14, issue 22
Atmos. Chem. Phys., 14, 12455-12464, 2014
https://doi.org/10.5194/acp-14-12455-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 12455-12464, 2014
https://doi.org/10.5194/acp-14-12455-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Nov 2014

Research article | 27 Nov 2014

Modeling of gaseous methylamines in the global atmosphere: impacts of oxidation and aerosol uptake

F. Yu and G. Luo F. Yu and G. Luo
  • Atmospheric Sciences Research Center, State University of New York, 251 Fuller Road, Albany, New York 12203, USA

Abstract. Gaseous amines have attracted increasing attention due to their potential role in enhancing particle nucleation and growth and affecting secondary organic aerosol formation. Here we study with a chemistry transport model the global distributions of the most common and abundant amines in the air: monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA). We show that gas phase oxidation and aerosol uptakes are dominant sinks for these methylamines. The oxidation alone (i.e., no aerosol uptake) leads to methylamine lifetimes of 5–10 h in most parts of low and middle latitude regions. The uptake by secondary species with uptake coefficient (γ) of 0.03 (corresponding to the uptake by sulfuric acid particles) reduces the lifetime by ~30% over oceans and much more over the major continents, resulting in a methylamine lifetime of less than 1–2 h over central Europe, eastern Asia, and eastern US. With the estimated global emission flux, from the literature, our simulations indicate that [DMA] in the model surface layer over major continents is generally in the range of 0.1–2 ppt (parts per trillion) when γ = 0.03 and 0.2–10 ppt when γ = 0, and decreases quickly with altitude. [DMA] over oceans is below 0.05 ppt and over polar regions it is below 0.01 ppt. The simulated [MMA] is about a factor of ~2.5 higher while [TMA] is a factor of ~8 higher than [DMA]. The modeled concentrations of methylamines are substantially lower than the limited observed values available, with normalized mean bias ranging from −57 (γ = 0) to −88% (γ = 0.03) for MMA and TMA, and from −78 (γ = 0) to −93% (γ = 0.03) for DMA.

Publications Copernicus
Download
Short summary
Global lifetimes and concentrations of gaseous methylamines (MMA, DMA, and TMA) have been simulated. Oxidation and aerosol uptakes are dominant sinks for these methylamines. The oxidation alone leads to their lifetimes of 5-10h in most parts of low and middle latitude regions. The uptake by secondary species can shorten their lifetime to as low as 1-2h over central Europe, eastern Asia, and the eastern US. The modeled concentrations are substantially lower than observed values available.
Global lifetimes and concentrations of gaseous methylamines (MMA, DMA, and TMA) have been...
Citation
Share