Validation of XCO$_2$ derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

M. Inoue1, I. Morino1, O. Uchino1, Y. Miyamoto2, Y. Yoshida1, T. Yokota1, T. Machida1, Y. Sawa3, H. Matsueda3, C. Sweeney4, P. P. Tans4, A. E. Andrews4, S. C. Biraud5, T. Tanaka1,*, S. Kawakami6, and P. K. Patra7

1National Institute for Environmental Studies (NIES), Tsukuba, Japan
2Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
3Meteorological Research Institute (MRI), Tsukuba, Japan
4National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
5Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
6Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
7Research Institute for Global Change, JAMSTEC, Yokohama, Japan

* now at: NASA Ames Research Center, Moffett Field, CA, USA

Correspondence to: M. Inoue (inoue.makoto@nies.go.jp)

Received: 30 November 2012 – Published in Atmos. Chem. Phys. Discuss.: 4 February 2013
Revised: 2 August 2013 – Accepted: 19 August 2013 – Published: 2 October 2013

Abstract. Column-averaged dry air mole fractions of carbon dioxide (XCO$_2$) retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations were validated with aircraft measurements by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. To calculate XCO$_2$ based on aircraft measurements (aircraft-based XCO$_2$), tower measurements and model outputs were used for additional information near the surface and above the tropopause, respectively. Before validation, we investigated the impacts of GOSAT SWIR column averaging kernels (CAKs) and the shape of a priori profiles on the aircraft-based XCO$_2$ calculation. The differences between aircraft-based XCO$_2$ with and without the application of GOSAT CAK were evaluated to be less than ±0.4 ppm at most, and less than ±0.1 ppm on average. Therefore, we concluded that the GOSAT CAK produces only a minor effect on the aircraft-based XCO$_2$ calculation in terms of the overall uncertainty of GOSAT XCO$_2$.

We compared GOSAT data retrieved within ±2° or ±5° latitude/longitude boxes centered at each aircraft measurement site to aircraft-based data measured on a GOSAT overpass day. The results indicated that GOSAT XCO$_2$ over land regions agreed with aircraft-based XCO$_2$, except that the former is biased by −0.68 ppm (−0.99 ppm) with a standard deviation of 2.56 ppm (2.51 ppm), whereas the averages of the differences between the GOSAT XCO$_2$ over ocean and the aircraft-based XCO$_2$ were −1.82 ppm (−2.27 ppm) with a standard deviation of 1.04 ppm (1.79 ppm) for ±2° (±5°) boxes.

1 Introduction

Global warming has become a serious international environmental issue over the last few decades. Forecasting concentrations of carbon dioxide (CO$_2$), which is the most important anthropogenic greenhouse gas (GHG), is required to predict the magnitude of global warming and future climate conditions. Atmospheric CO$_2$ concentrations have been measured with high accuracy at ground stations and tall towers as well as on ships, aircraft, and balloons using flask sampling or continuous measurement equipment. These measurements have provided extensive information regarding the latitudinal distribution and temporal variations of CO$_2$ in the atmosphere (e.g., Pales and Keeling, 1965; Conway et al., 1988;
Atmospheric measurements have also provided reasonable estimates of the global land-ocean partitioning or latitudinal distributions of surface fluxes of CO₂ through inverse modeling (Enting, 2002). However, because of the sparseness of existing observation sites and the limitations of their altitudinal range, current estimates of regional CO₂ sources and sinks have large uncertainties (Gurney et al., 2002).

Recently, a great deal of attention has been given to CO₂ observations using satellite remote sensing technology that can identify the regional distribution of GHGs and estimate their emissions and absorptions at the subcontinental scale. Rayner and O’Brien (2001) reported that the uncertainty in CO₂ fluxes estimated by inverse modeling can be substantially reduced if the current surface network is supplemented by spaceborne measurements of CO₂ column-averaged concentrations provided that individual column concentrations achieved a precision within ±1% without bias or with uniform bias. Although GHG observation by satellites has the advantage that the whole globe can be observed by a single instrument, it is considered to be less accurate than ground-based measurement (e.g., Christi and Stephens, 2004). Therefore, satellite-based data products must be validated by higher-precision data obtained independently such as ground-based Fourier transform spectrometer (FTS) data and aircraft measurement data.

Here, we present a brief overview of the current situation regarding GHG observations using satellite remote sensing. The temporal variations of CO₂ concentrations have been observed with the High-Resolution Infrared Sounder (HIRS; Chédin et al., 2002) onboard the National Oceanic and Atmospheric Administration (NOAA) polar meteorological satellites and the Atmospheric Infrared Sounder (AIRS; Crevoisier et al., 2004) onboard the Aqua satellite platform of the National Aeronautics and Space Administration (NASA). The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard ENVISAT, launched in March 2002 and operated until April 2012, made nadir observations in the near-infrared of the main GHGs and the ozone precursor gases (Dils et al., 2006). Column-averaged dry air mole fractions of carbon dioxide (XCO₂) derived from the SCIAMACHY instrument have been compared to ground-based FTS data (Dils et al., 2006; Schneising et al., 2012; Heymann et al., 2012).

More recently, the Greenhouse gases Observing SATellite (GOSAT), the world’s first satellite dedicated to measuring the atmospheric concentrations of CO₂ and CH₄ from space, has been operated since the early 2009, and observational results have been reported (Yokota et al., 2009; Yoshida et al., 2011; Morino et al., 2011; Oshchepkov et al., 2013). Yoshida et al. (2013) presented global distributions of XCO₂ retrieved from the Short-Wavelength InfraRed (SWIR) spectra of the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard the GOSAT. In addition, they performed the validation of GOSAT SWIR XCO₂ (ver. 02.xx, latest version released in June 2012) with data provided by a worldwide network of ground-based FTS called the Total Carbon Column Observing Network (TCCON. Wunch et al., 2011) and showed that the mean bias of the GOSAT XCO₂ (ver. 02.xx) was −1.48 ppm with a standard deviation of 2.09 ppm.

Along with the TCCON data, aircraft measurement data are useful for the validation of the satellite data. Araki et al. (2010) showed that the uncertainty of XCO₂ over Tsukuba calculated using aircraft data at one aircraft measurement site of Narita was estimated to be ~1 ppm and calculating XCO₂ from airliners could be applied to the validation of GOSAT products. In addition, Miyamoto et al. (2013) provided a method to calculate XCO₂ based on aircraft measurement vertical data (hereinafter aircraft-based XCO₂) at various locations over the world. In this study, we validated ver. 02.00 of the GOSAT SWIR XCO₂ with the aircraft-based XCO₂ calculated using the method as in Miyamoto et al. (2013). This paper is organized as follows: in Sect. 2, we describe GOSAT products, the aircraft measurements and meteorological tower data used in this study. In Sect. 3, the methodology used for the analysis is provided. In Sect. 4, the impacts of GOSAT SWIR column averaging kernels (CAKs) and assumed profiles in the stratosphere and mesosphere on aircraft-based XCO₂ calculation are examined. Then, comparisons between GOSAT products and aircraft-based XCO₂ are performed. We conclude the paper with a summary in Sect. 5.

2 Observations

2.1 Overview of GOSAT and products retrieved from GOSAT TANSO-FTS SWIR spectra

GOSAT is a satellite for spectroscopic remote sensing of the greenhouse gases that was launched on 23 January 2009 (Kuze et al., 2009). TANSO-FTS, onboard GOSAT, has three bands in the SWIR region centered at 0.76, 1.6, and 2.0 μm and one broad thermal infrared (TIR) band between 5.6 and 14.3 μm. The measurements in SWIR and TIR bands allow for the retrievals of XCO₂ and CO₂ concentration profiles, respectively (Saitoh et al., 2009; Yoshida et al., 2011, 2013). In this study, we performed the validation of XCO₂ retrieved from SWIR spectra with the latest retrieval algorithm (ver. 02.xx; see Yoshida et al., 2013, for details). Validation of the GOSAT TANSO-FTS SWIR level 2 products is of great significance, because these data form the basis of level 3 (data on the global distribution of XCO₂) and level 4 products (GHG fluxes). Level 2 products are already in use as part of the observational data to estimate surface CO₂ fluxes by inverse modeling and data assimilation (e.g., Takagi et al., 2011; Maksyutov et al., 2013; Saeki et al., 2013). Therefore,
GOSAT level 2 products (ver. 02.00 released in June 2012) must be evaluated using independent data with higher precision and no significant bias, i.e., a very small uncertainty. Here, we compare the GOSAT SWIR XCO\textsubscript{2} with aircraft-based XCO\textsubscript{2}.

2.2 Aircraft measurement data

The CONTRAIL project has started since late 2005 and been observing vertical CO\textsubscript{2} profiles using Japan Airlines Corporation (JAL) commercial airliners (Machida et al., 2008; Matsueda et al., 2008), which record frequent and spatially dense observation data. Five JAL commercial aircraft were instrumented with continuous CO\textsubscript{2} measuring equipment (CME), and most flights originate from Narita International Airport (hereinafter Narita) in Chiba, Japan. The data observed during the ascent and descent of the aircraft are taken as vertical CO\textsubscript{2} profiles over each observation site (airport), and have an overall uncertainty of 0.2 ppm. Typical observing altitudes are 1–11 km with vertical resolutions of 30–100 m. The CONTRAIL data are being used to gain an understanding of the meridional and seasonal variations of CO\textsubscript{2} near the tropopause (Sawa et al., 2008) and to validate or estimate CO\textsubscript{2} fluxes by inverse modeling for Asian regions (Patra et al., 2011; Niwa et al., 2012). The vertical CO\textsubscript{2} profiles are used in this study.

The NOAA Earth System Research Laboratory/Global Monitoring Division (ESRL/GMD) operates an aircraft-based flask air-sampling network designed to monitor the global distribution and interannual variations of CO\textsubscript{2} and several other trace gases in the atmosphere (NOAA/ESRL Carbon Cycle Greenhouse Gases Aircraft Program). Several atmospheric gases including CO\textsubscript{2} are measured using aircraft at about 20 sites, covering an altitude range of ~500 m to 7 km with vertical resolutions of 300–700 m, at weekly or bi-weekly sampling intervals. The measurement uncertainty is reported to be ~0.15 ppm. The NOAA ESRL/GMD aircraft measurements have been used for the validation of AIRS CO\textsubscript{2} retrieval at various pressure levels (Maddy et al., 2008).

The US Department of Energy (DOE) supports an aircraft-based observation program in the Southern Great Plains (SGP) as part of a joint effort between the Atmospheric Radiation Measurement (ARM) program, NOAA/ESRL, and the Lawrence Berkeley National Laboratory ARM Carbon project (Biraud et al., 2013). Flasks are collected approximately twice per week by small aircraft (Cessna 172 initially, then Cessna 206) on a series of horizontal legs ranging in altitude from 460 m to 5.5 km, and analyzed by NOAA/ESRL for a suite of carbon cycle gases and isotopes, thereby linking all flights to the global cooperative air-sampling network.

NIES also measures CO\textsubscript{2} densities by flask air sampling using aircraft to examine vertical and horizontal distributions of GHGs. There are three sites in Siberia and one site in Japan. Sampling frequency is once or twice a month. Typical observing altitudes are 0.5–7 km with vertical resolutions of 0.5–1.5 km, and the uncertainty of measurements is estimated to be 0.2 ppm, including the scale difference between standard gases (Nakazawa et al., 1997c; Machida et al., 2001).

Aircraft measurements obtained by the HIAPER Pole-to-Pole Observations (HIPPO) are also available for the GOSAT validation. The HIPPO project is a sequence of five global aircraft measurement programs that sample and measure the atmosphere from the North Pole through the coastal waters of Antarctica in the Pacific Basin, spanning the seasons (Wofsy et al., 2011). Most profiles extended from approximately 0.3 to 8.5 km altitudes, but sometimes above approximately 14 km. We here utilized the 10 s merged CO\textsubscript{2} data obtained from the second and third HIPPO missions (HIPPO-2 and HIPPO-3), which took place from October to November 2009 and from March to April 2010, respectively (Wofsy et al., 2012).

In addition, the NIES and the Japan Aerospace Exploration Agency (JAXA) jointly make aircraft measurements
of CO$_2$ and CH$_4$ over Japan about once or twice a year (hereinafter NIES-JAXA campaign). In this study, we used CO$_2$ profiles over Tsukuba (36.1°N, 140.1°E) in February 2010 obtained by flask sampling whose analytical precision is better than 0.03 ppm (Tanaka et al., 2012). However, the flight over Tsukuba was restricted to altitudes below 2 km because of the controlled airspace for the two international airports. Therefore, the altitudes from 7 to 2 km were sampled over Kumagaya (36.1°N, 139.2°E), about 70 km west of Tsukuba. Vertical profiles measured at Kumagaya and Tsukuba were used in the calculation of XCO$_2$ at Tsukuba. More detail is given in Tanaka et al. (2012).

There are other regular aircraft measurements or campaigns over the world. We also investigated data obtained from the TCCON calibration campaign in Europe (Wunch et al., 2010; Messerschmidt et al., 2011). Unfortunately, there were no data temporally matched up with the GOSAT data at European sites. Additionally, an observational altitude of regular aircraft measurements at the Bialystok site is restricted to about 3 km (Messerschmidt et al., 2012). Since it is very difficult to calculate XCO$_2$ without large uncertainties, CO$_2$ profiles at Bialystok were not used in this study.

In this study, 20 CONTRAIL sites, 16 NOAA sites, 1 DOE site, 4 NIES sites, 2 missions of HIPPO, and 1 NIES-JAXA campaign site were used for validation of GOSAT products. The respective locations are shown in Fig. 1, and their basic information is given in Table 1. CONTRAIL sites are widely distributed around the world, including Asia, Oceania, and Europe, whereas NOAA sites are concentrated mainly in North America (Fig. 1).

2.3 Tower data

The aircraft measurement data are obtained over a limited altitude range (about 0.5–12 km above the surface). As for additional information below the lower boundary of the aircraft data, we use the CO$_2$ concentration data measured by the tall towers of the Meteorological Research Institute (MRI) and NOAA. Because there are tall towers at limited aircraft measurement sites, four aircraft sites can use tower data: NRT and TKB use MRI tower data, and LEF and WBI use NOAA tower data (see Table 1 for site code of aircraft sites).

CO$_2$ concentrations were observed at a meteorological tower in the MRI, Tsukuba, Japan (36.1°N, 140.1°E, Inoue and Matsueda, 1996, 2001). Atmospheric concentrations of CO$_2$ at altitudes of 1.5, 25, 100, and 200 m above the ground were continuously observed with a precision better than 0.1 ppm using a non-dispersive infrared (NDIR) analyzer (Inoue and Matsueda, 1996) and recorded as hourly data. The tower data nearest to the aircraft measurement time were selected to complement CO$_2$ profiles.

The NOAA ESRL/GMD tall tower network also provides representative measurements of CO$_2$ in the continental boundary layer (Andrews et al., 2011). CO$_2$ data from two NOAA tower sites – Park Falls (Wisconsin, USA) and West Branch (Iowa, USA) – were used for LEF and WBI, respectively. There are three main observation stages: 30, 122, and 396 m above the ground in Park Falls, and 31, 99, and 379 m above the ground in West Branch. Observations were made several times over 10 min periods and every 30 s for the highest altitudes. We used averages of the data obtained within ±10 min of the beginning of the profile sampling time by the aircraft at each altitude to calculate XCO$_2$.

3 Analysis methods

3.1 XCO$_2$ calculation from aircraft data

The XCO$_2$ calculation method from aircraft data in this study was equivalent to that described previously by Miyamoto et al. (2013). Due to the limited range of altitudes for aircraft measurements, further observational data or certain assumptions were required near the surface and in the middle atmosphere. In the following subsections, we show a brief summary to construct a CO$_2$ profile from aircraft measurements as well as tower and model data.

3.1.1 Tropospheric profiles and the tropopause height

CO$_2$ profiles in the troposphere were constructed in a manner similar to that described by Araki et al. (2010). Where tower data were available, they were used near the surface to complement the CO$_2$ profiles of aircraft-based data. Where there were no tower data for a site, we extrapolated profiles obtained by the aircraft to the surface from the lowest measured aircraft data. When an airliner did not fly above the tropopause, the CO$_2$ concentration at the highest observational altitude was assumed to be constant up to the tropopause. The local tropopause height was determined from the Global Forecast System (GFS) model (http://nomads.ncdc.noaa.gov/) produced by the National Centers for Environmental Prediction (NCEP), and was in good agreement with radiosonde measurements (Pan and Munchak, 2011). In this study, we used the GFS tropopause height data provided as reanalysis values at 00:00, 06:00, 12:00, and 18:00 UTC, and the forecast values at 03:00, 09:00, 15:00, and 21:00 UTC (3 h after the reanalysis time) with 1° × 1° horizontal grids. For aircraft profiles that were measured higher than the local tropopause, model outputs in the stratosphere (see Sect. 3.1.2) were added above the highest aircraft measurement.

3.1.2 Profiles of the stratosphere and mesosphere

To complete stratospheric and mesospheric profiles, Araki et al. (2010) used an empirical model of profiles at mid-latitudes in the Northern Hemisphere. We used profiles derived from the mean “age of air,” defined as the time required for an air parcel to transit from the Earth’s surface to the layers above (Kida, 1983), at various altitudes according to
Table 1. Basic information for the aircraft measurement sites used for the GOSAT validation.

(a) CONTRAIL

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>airport name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>52.3</td>
<td>4.8</td>
<td>3</td>
<td>Amsterdam</td>
<td>Schiphol Airport</td>
</tr>
<tr>
<td>LHR</td>
<td>51.5</td>
<td>-0.5</td>
<td>24</td>
<td>London</td>
<td>Heathrow Airport</td>
</tr>
<tr>
<td>YYR</td>
<td>49.2</td>
<td>-123.2</td>
<td>4</td>
<td>Vancouver</td>
<td>Vancouver International Airport</td>
</tr>
<tr>
<td>CDG</td>
<td>49.0</td>
<td>2.5</td>
<td>119</td>
<td>Paris</td>
<td>Charles de Gaulle International Airport</td>
</tr>
<tr>
<td>MXP</td>
<td>45.6</td>
<td>8.7</td>
<td>24</td>
<td>Milan</td>
<td>Milan Malpensa International Airport</td>
</tr>
<tr>
<td>FCO</td>
<td>41.8</td>
<td>12.3</td>
<td>5</td>
<td>Rome</td>
<td>Fiumicino Airport</td>
</tr>
<tr>
<td>ICN</td>
<td>37.5</td>
<td>126.5</td>
<td>7</td>
<td>Incheon</td>
<td>Incheon International Airport</td>
</tr>
<tr>
<td>NRT</td>
<td>35.8</td>
<td>140.4</td>
<td>43</td>
<td>Narita</td>
<td>Narita International Airport</td>
</tr>
<tr>
<td>HND</td>
<td>35.6</td>
<td>139.8</td>
<td>6</td>
<td>Haneda</td>
<td>Tokyo International Airport</td>
</tr>
<tr>
<td>NGO</td>
<td>34.9</td>
<td>136.8</td>
<td>5</td>
<td>Nagoya</td>
<td>Chubu Centair International Airport</td>
</tr>
<tr>
<td>KIX</td>
<td>34.4</td>
<td>135.2</td>
<td>0</td>
<td>Kansai</td>
<td>Kansai International Airport</td>
</tr>
<tr>
<td>DEL</td>
<td>28.6</td>
<td>77.1</td>
<td>237</td>
<td>Delhi</td>
<td>Indira Gandhi International Airport</td>
</tr>
<tr>
<td>TPE</td>
<td>25.1</td>
<td>121.2</td>
<td>32</td>
<td>Taipei</td>
<td>Taiwan Taoyuan International Airport</td>
</tr>
<tr>
<td>HNL</td>
<td>21.3</td>
<td>-157.9</td>
<td>4</td>
<td>Honolulu</td>
<td>Honolulu International Airport</td>
</tr>
<tr>
<td>MNL</td>
<td>14.5</td>
<td>121.0</td>
<td>23</td>
<td>Manila</td>
<td>Ninoy Aquino International Airport</td>
</tr>
<tr>
<td>JFK</td>
<td>13.7</td>
<td>100.7</td>
<td>2</td>
<td>Bangkok</td>
<td>Suvarnabhumi International Airport</td>
</tr>
<tr>
<td>GUM</td>
<td>13.5</td>
<td>144.8</td>
<td>91</td>
<td>Guam</td>
<td>Guam International Airport</td>
</tr>
<tr>
<td>SIN</td>
<td>1.4</td>
<td>104.0</td>
<td>7</td>
<td>Singapore</td>
<td>Singapore Changi International Airport</td>
</tr>
<tr>
<td>CGK</td>
<td>-6.1</td>
<td>106.7</td>
<td>10</td>
<td>Jakarta</td>
<td>Jakarta International Soekarno-Hatta Airport</td>
</tr>
<tr>
<td>SYD</td>
<td>-33.9</td>
<td>151.2</td>
<td>6</td>
<td>Sydney</td>
<td>Kingsford Smith Airport</td>
</tr>
</tbody>
</table>

(b) NOAA

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA</td>
<td>65.1</td>
<td>-147.3</td>
<td>210</td>
<td>United States</td>
<td>Poker Flat, Alaska</td>
</tr>
<tr>
<td>BRM</td>
<td>54.3</td>
<td>-105.0</td>
<td>507</td>
<td>Canada</td>
<td>BERMS, Saskatchewan</td>
</tr>
<tr>
<td>ESP</td>
<td>49.6</td>
<td>-126.4</td>
<td>7</td>
<td>Canada</td>
<td>Estevan Point, British Columbia</td>
</tr>
<tr>
<td>DND</td>
<td>48.4</td>
<td>-97.8</td>
<td>464</td>
<td>United States</td>
<td>Dahlen, North Dakota</td>
</tr>
<tr>
<td>LEF</td>
<td>45.9</td>
<td>-90.3</td>
<td>472</td>
<td>United States</td>
<td>Park Falls, Wisconsin</td>
</tr>
<tr>
<td>NHA</td>
<td>43.0</td>
<td>-70.6</td>
<td>0</td>
<td>United States</td>
<td>Worcester, Massachusetts</td>
</tr>
<tr>
<td>WBI</td>
<td>41.7</td>
<td>-91.4</td>
<td>242</td>
<td>United States</td>
<td>West Branch, Iowa</td>
</tr>
<tr>
<td>THD</td>
<td>41.1</td>
<td>-124.2</td>
<td>107</td>
<td>United States</td>
<td>Trinidad Head, California</td>
</tr>
<tr>
<td>BNE</td>
<td>40.8</td>
<td>-97.2</td>
<td>466</td>
<td>United States</td>
<td>Beaver Crossing, Nebraska</td>
</tr>
<tr>
<td>CAR</td>
<td>40.4</td>
<td>-104.3</td>
<td>1740</td>
<td>United States</td>
<td>Briggsdale, Colorado</td>
</tr>
<tr>
<td>HIL</td>
<td>40.1</td>
<td>-87.9</td>
<td>202</td>
<td>United States</td>
<td>Homer, Illinois</td>
</tr>
<tr>
<td>AAO</td>
<td>40.1</td>
<td>-88.6</td>
<td>213</td>
<td>United States</td>
<td>Airborne Aerosol Observing, Illinois</td>
</tr>
<tr>
<td>CMA</td>
<td>38.8</td>
<td>-74.3</td>
<td>0</td>
<td>United States</td>
<td>Cape May, New Jersey</td>
</tr>
<tr>
<td>SCA</td>
<td>32.8</td>
<td>-79.6</td>
<td>0</td>
<td>United States</td>
<td>Charleston, South Carolina</td>
</tr>
<tr>
<td>TGC</td>
<td>27.7</td>
<td>-96.9</td>
<td>0</td>
<td>United States</td>
<td>Sinton, Texas</td>
</tr>
<tr>
<td>RTA</td>
<td>-21.3</td>
<td>-159.8</td>
<td>3</td>
<td>Cook Islands</td>
<td>Rarotonga</td>
</tr>
</tbody>
</table>

(c) DOE

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGP</td>
<td>36.8</td>
<td>-97.5</td>
<td>314</td>
<td>United States</td>
<td>Southern Great Plains, Oklahoma</td>
</tr>
</tbody>
</table>

(d) NIES

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAK</td>
<td>62</td>
<td>130</td>
<td>136</td>
<td>Russia</td>
<td>Yakutsk</td>
</tr>
<tr>
<td>SUR</td>
<td>61</td>
<td>73</td>
<td>35</td>
<td>Russia</td>
<td>Surgut</td>
</tr>
<tr>
<td>NOV</td>
<td>55</td>
<td>83</td>
<td>143</td>
<td>Russia</td>
<td>Novosibirsk</td>
</tr>
<tr>
<td>SGM</td>
<td>35.1</td>
<td>139.3</td>
<td>0</td>
<td>Japan</td>
<td>Sagami-bay</td>
</tr>
</tbody>
</table>

(e) HIPPO

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPA</td>
<td>49</td>
<td>-110</td>
<td>1040</td>
<td>United States</td>
<td>northeastern part of Great Falls, Montana</td>
</tr>
<tr>
<td>HPB</td>
<td>-28</td>
<td>-166</td>
<td>0</td>
<td>South Pacific Ocean</td>
<td>southeastern part of Tonga</td>
</tr>
<tr>
<td>HPC</td>
<td>-33</td>
<td>158</td>
<td>0</td>
<td>Australia</td>
<td>eastern part of Lord Howe</td>
</tr>
<tr>
<td>HPD</td>
<td>-5</td>
<td>-167</td>
<td>0</td>
<td>Kiribati</td>
<td>western part of Enderbury</td>
</tr>
<tr>
<td>HPE</td>
<td>-37</td>
<td>179</td>
<td>0</td>
<td>New Zealand</td>
<td>northeastern part of Bay of Plenty</td>
</tr>
</tbody>
</table>

(f) NIES–JAXA campaign

<table>
<thead>
<tr>
<th>site code</th>
<th>latitude [deg. N]</th>
<th>longitude [deg. E]</th>
<th>elevation [m]</th>
<th>region</th>
<th>site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKB</td>
<td>36.1</td>
<td>140.1</td>
<td>31</td>
<td>Japan</td>
<td>Tsukuba</td>
</tr>
</tbody>
</table>
Fig. 2. An example of CO₂ profiles constructed over Narita (Japan). (a) High-altitude profile. The red rectangular area is expanded in (b). The open circles and triangles represent aircraft data and tower data, respectively. The solid and dashed lines show the observed and assumed CO₂ profiles, respectively. See the text for more details.

3.1.3 Dry air number density profiles

To obtain the number density profiles of dry air, we utilized meteorological data from the Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA-86; Fleming et al., 1990), which provides empirical models of atmospheric temperature and air number densities from the surface to 120 km. We estimated the aircraft-based XCO₂ using the air number densities of CIRA-86 and grid point value (GPV) data from a numerical weather prediction model developed by the Japan Meteorological Agency (e.g., Nakazawa et al., 1995; Miyamoto et al., 2013). Although ACTM was used for profiles of the stratosphere and mesosphere in this study, we evaluated the impact of profiles in the middle atmosphere on the aircraft-based XCO₂ calculation using the two other model outputs discussed in Sect. 4.2.

3.1.4 Aircraft-based CO₂ profiles and XCO₂ with and without column averaging kernel (CAK)

An example of aircraft-based CO₂ profiles is shown in Fig. 2. The open circles and triangles represent aircraft measurement data and tower data, respectively. In addition, the solid and dashed lines show the observed (i.e., based on in situ measurements) and assumed CO₂ profiles, respectively. Based on aircraft-based CO₂ profiles, XCO₂ with and without applying GOSAT SWIR CAK is calculated.
CAK a is defined as

$$a_j = (h^T A)^{-1} h_j,$$
(1)

where the subscript j denotes the index of the j-th layer, A is the averaging kernel matrix, and h is a pressure weighting function calculated based on the dry air number density profile (Connor et al., 2008; Ohyama et al., 2009; Yoshida et al., 2010). CAK is a function of pressure and solar zenith angle. The GOSAT CAKs with respect to solar zenith angle are calculated according to the method of Rodgers and Connor (2003) and Connor et al. (2008).

$$X_{\text{CO}_2}^{\text{in-situ,CAK}} = X_{\text{CO}_2}^a + \sum_j h_j (t_{\text{in-situ}} - t_a) j$$
(2)

where $X_{\text{CO}_2}^a$ is the column-averaged dry mole fractions of CO$_2$ for the a priori profile t_a, and $t_{\text{in-situ}}$ is the aircraft-based CO$_2$ profile. The a priori CO$_2$ profile for GOSAT is calculated for every observation day by an offline global atmospheric transport model developed by NIES (NIES TM, Maksyutov et al., 2008). GOSAT a priori profiles have some effects on CO$_2$ retrieval.

Aircraft-based CO$_2$ without applying the CO$_2$ CAK can be expressed as

$$X_{\text{CO}_2}^{\text{in-situ,noCAK}} = h^T \cdot t_{\text{in-situ}}.$$
(4)

Note that the actual altitudinal integrations of Eqs. (3) and (4) were conducted from the ground up to the altitude of the mesopause (~ 85 km) with a vertical resolution of 100 m based on the method described by Araki et al. (2010). Based on the method of Miyamoto et al. (2013), we calculated the uncertainty of aircraft-based CO$_2$ for each flight. In this study, we use the aircraft-based CO$_2$ data with an uncertainty of less than 1 ppm for validation of GOSAT CO$_2$ data. Detail of the uncertainty is described in Miyamoto et al. (2013).

It is necessary to apply the GOSAT SWIR CAK and convolution with the a priori profiles used in satellite data retrievals to the aircraft measurement data for a meaningful comparison between the two measurements. We applied the GOSAT CAK to aircraft-based CO$_2$ calculation when comparing the GOSAT data with temporally matched aircraft data (Sect. 4.3). On the other hand, we cannot apply the GOSAT SWIR CAK to the fitted aircraft-based CO$_2$ due to the absence of the vertical information for all aircraft measurements when comparing GOSAT SWIR XCO$_2$ with the gap-filling time series of the aircraft-based XCO$_2$ through curve fitting (see the Supplement for details on comparisons by the curve fitting method). Therefore, we first evaluated the impact of GOSAT SWIR CAK on the aircraft-based XCO$_2$ calculation (Sect. 4.1).

3.2 Validation method for GOSAT products using aircraft data

Based on the results of the impacts of GOSAT SWIR CAK on the XCO$_2$ calculation, we performed a comparison of the GOSAT data retrieved within ± 2 or $\pm 5^\circ$ latitude/longitude boxes centered at each observation site and aircraft-based data measured on a GOSAT overpass day. The aircraft data temporally nearest to the GOSAT overpass time were selected where there were multiple aircraft data associated with the particular GOSAT data. Scatter diagrams between GOSAT XCO$_2$ and aircraft-based XCO$_2$ are presented for land and ocean separately, and correlation coefficients and their differences are estimated in Sect. 4.3.

This extraction method enabled us to validate GOSAT products using the temporally matched observational data. However, this method resulted in no temporally matched data at certain observation sites where no aircraft measurements were made on the GOSAT overpass day. Therefore, we compared GOSAT XCO$_2$ with temporally interpolated aircraft-based XCO$_2$ data by curve fitting (e.g., Nakazawa et al., 1997a) in the Supplement.

4 Results

4.1 Impact of GOSAT SWIR CAK on the aircraft-based XCO$_2$ calculation

The impact of the GOSAT SWIR CAK on the aircraft-based XCO$_2$ calculation was evaluated for each observation site. We made a connection between aircraft-based data at a certain time of the day and the GOSAT data nearest to the aircraft observation site for all GOSAT data obtained within $\pm 10^\circ$ latitude/longitude boxes centered at the observation site on the same day. When we use the $\pm 5^\circ$ boxes, the number of unavailable observation site becomes more than 10, and the results for available sites are almost same as those for the $\pm 10^\circ$ boxes (results for the $\pm 5^\circ$ boxes are not shown). In this study, XCO$_2$ calculated from the aircraft-based data weighted with a selected GOSAT SWIR CAK using Eq. (2) was expressed as “aircraft-based XCO$_2$ with CAK,” whereas XCO$_2$ calculated from the aircraft-based data without the application of GOSAT CAK using Eq. (4) was expressed as “aircraft-based XCO$_2$ without CAK.”

Before evaluation of the GOSAT CAK impacts, we show examples of vertical profiles of CO$_2$ densities and CAK over several locations. In Fig. 3a and b, black lines, blue open circles, and blue triangles indicate the GOSAT SWIR CAK and profiles of the aircraft and tower measurements of CO$_2$ over Narita, respectively. Red lines indicate the GOSAT a priori profiles of CO$_2$, which were calculated for the day of observation by NIES TM. The atmosphere was divided into 15 layers from the surface to 0.1 hPa with a constant pressure difference. We focused on 28 June 2009 (Fig. 3a),
when the difference between aircraft-based XCO2 with and without the application of CAK was larger (0.132 ppm) over Narita during the analysis period. As is clear from Fig. 3a, the XCO2 values of tower measurement were not coincident with those of GOSAT a priori. It was assumed that this disagreement (i.e., the shape of the a priori profile) was one reason for the increase in XCO2 difference associated with the application of CAK. In the case of 6 April 2010, vertical profiles of the aircraft and tower agreed well with those of the a priori profile (Fig. 3b), and hence the difference between aircraft-based XCO2 with and without CAK was as small as 0.046 ppm. Figure 3c shows an example of vertical profiles in Honolulu, Hawaii. As there is no meteorological tower, the concentration of the lowest observational altitude of an airliner has been extended down to the surface. The CO2 concentration was lower in the upper troposphere and higher above the tropopause (Fig. 3c). This may be explained by meridional transport of CO2 from the tropical troposphere in the northern summer (Sawa et al., 2008). In the Southern Great Plains (Oklahoma, USA), two examples for the northern summer and winter are given (Fig. 3d, e). The CO2 concentration is clearly lower near the surface and higher in the midtroposphere in summer, whereas CO2 densities in winter decrease with height. We also show an example of the HIPPO data in Fig. 3f.
Fig. 4. Temporal variations of XCO$_2$ with and without CAK in (a) Narita, (b) the Southern Great Plains, and (c) Honolulu. Red and black closed circles indicate XCO$_2$ with and without the application of CAK, respectively. Open triangles denote the differences between XCO$_2$ with CAK and without CAK.
Figure 4a shows the temporal variations of aircraft-based XCO\(_2\) over Narita (Northern Hemisphere) from June 2009 to July 2010. A total of 225 temporally matched cases were obtained. Both data with and without CAK showed that XCO\(_2\) is higher in spring and lower from late summer through autumn. Open triangles denote the differences, which are less than ±0.2 ppm in most cases. As listed in Table 2, the average of all differences between aircraft-based XCO\(_2\) with and without the application of GOSAT CAK (aircraft-based XCO\(_2\) with CAK minus aircraft-based XCO\(_2\) without CAK) in Narita is as small as −0.030 ± 0.095 ppm, and it can be assumed that the GOSAT SWIR CAK has only a minor effect on the aircraft-based XCO\(_2\) calculation over Narita. We also present temporal variations and the impacts of GOSAT CAK for the Southern Great Plains and Honolulu (Fig. 4b and c). Temporally matched data were confined to the period between late spring and early autumn in Honolulu (Fig. 4c). This may be attributed to sunglint observation, which is conducted by utilizing specular reflection over ocean regions where surface reflectance is small (e.g., Kuze et al., 2009). Consequently, 671 samples were extracted from 41 observation sites, and the average of all differences was −0.022 ppm with a standard deviation of 0.088 ppm (Table 2).

The differences between aircraft-based XCO\(_2\) with CAK and without CAK were evaluated to be less than ±0.4 ppm at most, and less than ±0.1 ppm on average (Table 2). Therefore, we concluded that the GOSAT SWIR CAK had a minor effect on the aircraft-based XCO\(_2\) calculation.

4.2 Impact of model profiles in the stratosphere and mesosphere on the aircraft-based XCO\(_2\) calculation

In addition to ACTM, two more model outputs were used as the middle atmosphere profiles to investigate the impact. We calculated XCO\(_2\) from aircraft profiles using ACTM, a priori profiles as in GOSAT retrieval (Maksyutov et al., 2008, see Sect. 3.1.4), and a priori profiles of TCCON (Wunch et al., 2010) as stratospheric and mesospheric profiles at four aircraft sites (Park Falls, the Southern Great Plains, Narita, and Sydney), located near the TCCON sites – Park Falls, Lamont (Oklahoma, USA), Tsukuba (Japan), and Wollongong (Australia). Column abundances calculated from the three model profiles were referred to as “ACTM XCO\(_2\)”, “GOSAT prior XCO\(_2\)”, and “TCCON prior XCO\(_2\)”, respectively. Figure 5 shows an example for Narita on 28 November 2009. Blue, red, and green dashed lines above the tropopause indicate profiles by ACTM, a priori as in the GOSAT retrieval, and a priori of TCCON, respectively. The blue solid lines show observation data, including aircraft measurements.

was −0.4 ppm (note that their results were based on profiles in all layers of the ACTM and TCCON). The results of 116 examples obtained at four observation sites indicated that the difference between “ACTM XCO\(_2\)” and “GOSAT prior XCO\(_2\)” was as small as 0.125 ± 0.334 ppm. On the other hand, “ACTM XCO\(_2\) minus TCCON prior XCO\(_2\)” was −0.161 ± 0.098 ppm. Although the XCO\(_2\) differences varied by region, the amount of CO\(_2\) above the tropopause was small, and consequently did not have a large effect on the aircraft-based XCO\(_2\) calculation at the four observation sites.

4.3 Comparison between GOSAT XCO\(_2\) and aircraft-based XCO\(_2\)

We compared the GOSAT data observed within ±2 and ±5° latitude/longitude boxes centered at each observation site with aircraft-based data. Figure 6 shows comparisons between aircraft-based XCO\(_2\) with the application of CAK and GOSAT data. In addition, the average and 1σ of the differences between GOSAT XCO\(_2\) and aircraft-based XCO\(_2\) at each site are listed in Table 4. For the ±2° boxes, there were a total of 74 observations over land and 11 over oceans, whereas there were a total of 182 observations over land and 40 over oceans for the ±5° boxes. In ocean regions, the mean biases of GOSAT data relative to aircraft measurements were −1.82 ppm with a standard deviation between two datasets of 1.04 and −2.27 ppm with a standard deviation of 1.79 ppm for the ±2 and ±5° boxes, respectively. Correlation coefficients between both datasets were 0.96 and 0.82.
Table 2. The average, maximum, minimum, and 1 standard deviation (1σ) of the differences between aircraft-based XCO\textsubscript{2} with and without the application of GOSAT CAK (aircraft-based XCO\textsubscript{2} with CAK minus aircraft-based XCO\textsubscript{2} without CAK) at each aircraft observation site.

<table>
<thead>
<tr>
<th>site</th>
<th>number</th>
<th>average [ppm]</th>
<th>1σ [ppm]</th>
<th>maximum [ppm]</th>
<th>minimum [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>10</td>
<td>0.041</td>
<td>0.071</td>
<td>0.109</td>
<td>−0.100</td>
</tr>
<tr>
<td>LHR</td>
<td>5</td>
<td>−0.073</td>
<td>0.088</td>
<td>0.023</td>
<td>−0.204</td>
</tr>
<tr>
<td>YVR</td>
<td>7</td>
<td>0.005</td>
<td>0.085</td>
<td>0.115</td>
<td>−0.165</td>
</tr>
<tr>
<td>CDG</td>
<td>5</td>
<td>0.173</td>
<td>0.070</td>
<td>0.247</td>
<td>0.083</td>
</tr>
<tr>
<td>MXP</td>
<td>2</td>
<td>0.031</td>
<td>0.015</td>
<td>0.042</td>
<td>0.020</td>
</tr>
<tr>
<td>FCO</td>
<td>2</td>
<td>0.141</td>
<td>0.000</td>
<td>0.141</td>
<td>0.141</td>
</tr>
<tr>
<td>ICN</td>
<td>2</td>
<td>0.033</td>
<td>0.011</td>
<td>0.041</td>
<td>0.025</td>
</tr>
<tr>
<td>NRT</td>
<td>225</td>
<td>−0.030</td>
<td>0.095</td>
<td>0.245</td>
<td>−0.360</td>
</tr>
<tr>
<td>HND</td>
<td>17</td>
<td>0.052</td>
<td>0.084</td>
<td>0.188</td>
<td>−0.085</td>
</tr>
<tr>
<td>NGO</td>
<td>37</td>
<td>−0.056</td>
<td>0.077</td>
<td>0.127</td>
<td>−0.245</td>
</tr>
<tr>
<td>KIX</td>
<td>21</td>
<td>−0.069</td>
<td>0.091</td>
<td>0.090</td>
<td>−0.197</td>
</tr>
<tr>
<td>DEL</td>
<td>6</td>
<td>0.021</td>
<td>0.035</td>
<td>0.062</td>
<td>−0.026</td>
</tr>
<tr>
<td>TPE</td>
<td>1</td>
<td>−0.058</td>
<td>−</td>
<td>−0.058</td>
<td>−0.058</td>
</tr>
<tr>
<td>HNL</td>
<td>35</td>
<td>−0.008</td>
<td>0.088</td>
<td>0.174</td>
<td>−0.207</td>
</tr>
<tr>
<td>MNL</td>
<td>2</td>
<td>−0.019</td>
<td>0.109</td>
<td>0.058</td>
<td>−0.096</td>
</tr>
<tr>
<td>BKK</td>
<td>33</td>
<td>0.004</td>
<td>0.067</td>
<td>0.136</td>
<td>−0.133</td>
</tr>
<tr>
<td>GUM</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SIN</td>
<td>13</td>
<td>−0.050</td>
<td>0.095</td>
<td>0.070</td>
<td>−0.249</td>
</tr>
<tr>
<td>CGK</td>
<td>10</td>
<td>−0.043</td>
<td>0.041</td>
<td>0.024</td>
<td>−0.114</td>
</tr>
<tr>
<td>SYD</td>
<td>52</td>
<td>−0.033</td>
<td>0.074</td>
<td>0.062</td>
<td>−0.229</td>
</tr>
<tr>
<td>PFA</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>BRM</td>
<td>1</td>
<td>−0.010</td>
<td>−</td>
<td>−0.010</td>
<td>−0.010</td>
</tr>
<tr>
<td>ESP</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>DND</td>
<td>7</td>
<td>0.039</td>
<td>0.060</td>
<td>0.140</td>
<td>−0.045</td>
</tr>
<tr>
<td>LEF</td>
<td>17</td>
<td>0.035</td>
<td>0.067</td>
<td>0.157</td>
<td>−0.132</td>
</tr>
<tr>
<td>NHA</td>
<td>17</td>
<td>0.007</td>
<td>0.108</td>
<td>0.252</td>
<td>−0.105</td>
</tr>
<tr>
<td>WBI</td>
<td>12</td>
<td>−0.037</td>
<td>0.055</td>
<td>0.084</td>
<td>−0.109</td>
</tr>
<tr>
<td>THD</td>
<td>3</td>
<td>0.009</td>
<td>0.035</td>
<td>0.041</td>
<td>−0.028</td>
</tr>
<tr>
<td>BNE</td>
<td>5</td>
<td>0.034</td>
<td>0.030</td>
<td>0.066</td>
<td>−0.011</td>
</tr>
<tr>
<td>CAR</td>
<td>20</td>
<td>−0.014</td>
<td>0.078</td>
<td>0.124</td>
<td>−0.223</td>
</tr>
<tr>
<td>HIL</td>
<td>17</td>
<td>−0.049</td>
<td>0.069</td>
<td>0.101</td>
<td>−0.135</td>
</tr>
<tr>
<td>AAO</td>
<td>29</td>
<td>0.002</td>
<td>0.074</td>
<td>0.122</td>
<td>−0.127</td>
</tr>
<tr>
<td>CMA</td>
<td>1</td>
<td>−0.039</td>
<td>−</td>
<td>−0.039</td>
<td>−0.039</td>
</tr>
<tr>
<td>SCA</td>
<td>9</td>
<td>−0.057</td>
<td>0.060</td>
<td>0.031</td>
<td>−0.157</td>
</tr>
<tr>
<td>TGC</td>
<td>7</td>
<td>−0.039</td>
<td>0.087</td>
<td>0.044</td>
<td>−0.210</td>
</tr>
<tr>
<td>RTA</td>
<td>5</td>
<td>−0.094</td>
<td>0.067</td>
<td>−0.017</td>
<td>−0.184</td>
</tr>
<tr>
<td>SGP</td>
<td>25</td>
<td>−0.065</td>
<td>0.057</td>
<td>0.067</td>
<td>−0.142</td>
</tr>
<tr>
<td>YAK</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SUR</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>NOV</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SGM</td>
<td>3</td>
<td>0.090</td>
<td>0.147</td>
<td>0.240</td>
<td>−0.055</td>
</tr>
<tr>
<td>HPA</td>
<td>1</td>
<td>−0.096</td>
<td>−</td>
<td>−0.096</td>
<td>−0.096</td>
</tr>
<tr>
<td>HPB</td>
<td>1</td>
<td>−0.099</td>
<td>−</td>
<td>−0.099</td>
<td>−0.099</td>
</tr>
<tr>
<td>HPC</td>
<td>1</td>
<td>−0.044</td>
<td>−</td>
<td>−0.044</td>
<td>−0.044</td>
</tr>
<tr>
<td>HPD</td>
<td>1</td>
<td>0.005</td>
<td>−</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>HPE</td>
<td>1</td>
<td>−0.166</td>
<td>−</td>
<td>−0.166</td>
<td>−0.166</td>
</tr>
<tr>
<td>TKB</td>
<td>3</td>
<td>−0.037</td>
<td>0.012</td>
<td>−0.023</td>
<td>−0.043</td>
</tr>
<tr>
<td>All data</td>
<td>671</td>
<td>−0.022</td>
<td>0.088</td>
<td>0.252</td>
<td>−0.360</td>
</tr>
</tbody>
</table>
Table 3. The average and 1 standard deviation (1σ) of the differences of aircraft-based XCO₂ calculated by using ACTM, a priori profiles of TCCON, and a priori profiles as in the GOSAT retrieval system in the stratosphere and mesosphere at each aircraft observation site.

<table>
<thead>
<tr>
<th>aircraft site (TCCON site)</th>
<th>number</th>
<th>ACTM-TCCON prior</th>
<th>ACTM-GOSAT prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>average [ppm]</td>
<td>1σ [ppm]</td>
<td>average [ppm]</td>
</tr>
<tr>
<td>LEM (Park Falls)</td>
<td>11</td>
<td>−0.311</td>
<td>0.076</td>
</tr>
<tr>
<td>SGP (Lamont)</td>
<td>25</td>
<td>−0.176</td>
<td>0.083</td>
</tr>
<tr>
<td>NRT (Tsukuba)</td>
<td>60</td>
<td>−0.115</td>
<td>0.083</td>
</tr>
<tr>
<td>SYD (Wollongong)</td>
<td>20</td>
<td>−0.198</td>
<td>0.060</td>
</tr>
<tr>
<td>All data</td>
<td>116</td>
<td>−0.161</td>
<td>0.098</td>
</tr>
</tbody>
</table>

Fig. 6. Scatter diagrams between GOSAT XCO₂ observed within (a) ±2 and (b) ±5° latitude/longitude boxes centered at each aircraft observation site and aircraft-based XCO₂ with the application of CAK measured on a GOSAT overpass day. Green and blue dots indicate GOSAT XCO₂ obtained over land and ocean regions, respectively. The one-to-one lines are plotted as black lines.

with significance at the 99% level, for XCO₂ data within the ±2 and ±5° boxes, respectively, though the sample size was small over ocean. Over the land regions, the mean biases of GOSAT SWIR XCO₂ relative to aircraft measurements were −0.68 ppm with a standard deviation between two datasets of 2.56 ppm, and −0.99 ppm with a standard deviation of 2.51 ppm, and the correlation coefficients were 0.85 and 0.86 with significance at the 99% level for the ±2 and ±5° boxes, respectively. In general, the 1σ over land was larger than that over ocean regions. Aerosols and clouds are major sources of disturbance in GHG retrievals from space due to the modification of the equivalent optical path length (Mao and Kawa, 2004; Houweling et al., 2005; Reuter et al., 2010), and might produce a significant bias in the retrieved XCO₂ (Uchino et al., 2012). The atmosphere over ocean regions appears to be cleaner due to the absence of polluted air and aerosols from urban areas, whereas GOSAT XCO₂ retrieval in several land regions may be profoundly affected by polluted air and urban aerosols.

Finally, the validation results by the direct comparison were compared with those by the curve fitting method shown in the Supplement. Table 5 summarizes the average and 1σ of the differences between GOSAT XCO₂ and aircraft-based XCO₂ for all sites by direct comparison and the curve fitting method. The 1σ over land by the curve fitting method (2.36 and 2.37 ppm for ±2 and ±5° boxes, respectively) was smaller than that by the direct comparisons (2.56 and 2.51 ppm for ±2 and ±5° boxes, respectively). This implies that the curve fitting method could remove some errors by fitting the aircraft-based XCO₂ despite adding uncertainties due to the curve fitting. On the other hand, the overall bias over land by the curve fitting (−1.6 and −1.8 ppm for ±2 and ±5° boxes, respectively) was larger than that by the direct comparisons (−0.7 and −1.0 ppm for ±2 and ±5° boxes, respectively). The mean bias over land by the curve fitting method was consistent with that of Yoshida et al. (2013), who compared the GOSAT data with the TCCON data (−1.48 ppm). Also, 1σ of the GOSAT bias over land calculated using aircraft measurements (2.56 and 2.36 ppm...
Table 4. The average and 1 standard deviation (1σ) of the differences between GOSAT XCO$_2$ and aircraft-based XCO$_2$ at each site. The GOSAT data were retrieved over (a) land and (b) ocean regions within ±2 and ±5° latitude/longitude boxes centered at each aircraft observation site.

<table>
<thead>
<tr>
<th>(a) Land site</th>
<th>number</th>
<th>±2 deg. average [ppm]</th>
<th>1σ [ppm]</th>
<th>number</th>
<th>±5 deg. average [ppm]</th>
<th>1σ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRT</td>
<td>25</td>
<td>-0.212</td>
<td>2.646</td>
<td>40</td>
<td>-0.266</td>
<td>2.448</td>
</tr>
<tr>
<td>LHR</td>
<td>0</td>
<td>-</td>
<td>1.733</td>
<td>3</td>
<td>-3.173</td>
<td>1.733</td>
</tr>
<tr>
<td>YVR</td>
<td>0</td>
<td>-</td>
<td>2.232</td>
<td>6</td>
<td>-1.039</td>
<td>2.232</td>
</tr>
<tr>
<td>MXP</td>
<td>0</td>
<td>-</td>
<td>1.943</td>
<td>2</td>
<td>-0.182</td>
<td>1.943</td>
</tr>
<tr>
<td>ICN</td>
<td>1</td>
<td>0.331</td>
<td>-</td>
<td>1</td>
<td>0.331</td>
<td>-</td>
</tr>
<tr>
<td>NGO</td>
<td>6</td>
<td>0.093</td>
<td>3.732</td>
<td>11</td>
<td>0.366</td>
<td>2.817</td>
</tr>
<tr>
<td>KIX</td>
<td>1</td>
<td>-1.076</td>
<td>-</td>
<td>4</td>
<td>-1.299</td>
<td>2.781</td>
</tr>
<tr>
<td>TPE</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4.705</td>
<td>-</td>
</tr>
<tr>
<td>BKK</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-3.832</td>
<td>4.028</td>
</tr>
<tr>
<td>SYD</td>
<td>2</td>
<td>-0.630</td>
<td>1.172</td>
<td>9</td>
<td>-1.863</td>
<td>1.922</td>
</tr>
<tr>
<td>DND</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.779</td>
<td>-</td>
</tr>
<tr>
<td>LEF</td>
<td>1</td>
<td>-2.621</td>
<td>-</td>
<td>5</td>
<td>-2.886</td>
<td>1.963</td>
</tr>
<tr>
<td>NHA</td>
<td>1</td>
<td>-1.705</td>
<td>-</td>
<td>7</td>
<td>0.061</td>
<td>1.852</td>
</tr>
<tr>
<td>WBI</td>
<td>1</td>
<td>-5.608</td>
<td>-</td>
<td>10</td>
<td>-1.417</td>
<td>2.301</td>
</tr>
<tr>
<td>THD</td>
<td>1</td>
<td>-1.978</td>
<td>-</td>
<td>1</td>
<td>-1.978</td>
<td>-</td>
</tr>
<tr>
<td>BNE</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-3.198</td>
<td>0.754</td>
</tr>
<tr>
<td>CAR</td>
<td>1</td>
<td>-2.601</td>
<td>-</td>
<td>9</td>
<td>-2.500</td>
<td>2.667</td>
</tr>
<tr>
<td>HIL</td>
<td>7</td>
<td>-1.369</td>
<td>1.752</td>
<td>11</td>
<td>-1.465</td>
<td>1.644</td>
</tr>
<tr>
<td>AAO</td>
<td>6</td>
<td>-0.488</td>
<td>1.362</td>
<td>20</td>
<td>-0.331</td>
<td>2.267</td>
</tr>
<tr>
<td>SCA</td>
<td>6</td>
<td>-0.919</td>
<td>2.320</td>
<td>7</td>
<td>-0.090</td>
<td>1.192</td>
</tr>
<tr>
<td>TGC</td>
<td>1</td>
<td>2.470</td>
<td>-</td>
<td>5</td>
<td>-0.924</td>
<td>2.517</td>
</tr>
<tr>
<td>SGP</td>
<td>9</td>
<td>-2.662</td>
<td>1.677</td>
<td>16</td>
<td>-2.656</td>
<td>1.876</td>
</tr>
<tr>
<td>SGM</td>
<td>2</td>
<td>3.630</td>
<td>3.739</td>
<td>2</td>
<td>3.630</td>
<td>3.739</td>
</tr>
<tr>
<td>HPA</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-3.471</td>
<td>-</td>
</tr>
<tr>
<td>HPE</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-2.158</td>
<td>-</td>
</tr>
<tr>
<td>TKB</td>
<td>3</td>
<td>1.118</td>
<td>1.874</td>
<td>3</td>
<td>1.118</td>
<td>1.874</td>
</tr>
<tr>
<td>All data</td>
<td>74</td>
<td>-0.678</td>
<td>2.559</td>
<td>182</td>
<td>-0.991</td>
<td>2.506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Ocean site</th>
<th>number</th>
<th>±2 deg. average [ppm]</th>
<th>1σ [ppm]</th>
<th>number</th>
<th>±5 deg. average [ppm]</th>
<th>1σ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRT</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-4.549</td>
<td>3.880</td>
</tr>
<tr>
<td>FCO</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.043</td>
<td>-</td>
</tr>
<tr>
<td>NGO</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-2.212</td>
<td>1.875</td>
</tr>
<tr>
<td>KIX</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-3.766</td>
<td>3.073</td>
</tr>
<tr>
<td>HNL</td>
<td>6</td>
<td>-1.749</td>
<td>1.022</td>
<td>14</td>
<td>-1.679</td>
<td>0.976</td>
</tr>
<tr>
<td>BKK</td>
<td>1</td>
<td>-2.924</td>
<td>-</td>
<td>2</td>
<td>-3.562</td>
<td>0.902</td>
</tr>
<tr>
<td>SIN</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-2.222</td>
<td>1.066</td>
</tr>
<tr>
<td>CGK</td>
<td>1</td>
<td>-0.701</td>
<td>-</td>
<td>1</td>
<td>-0.701</td>
<td>-</td>
</tr>
<tr>
<td>SYD</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-1.683</td>
<td>1.617</td>
</tr>
<tr>
<td>NHA</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-5.697</td>
<td>-</td>
</tr>
<tr>
<td>SCA</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-2.483</td>
<td>1.601</td>
</tr>
<tr>
<td>RTA</td>
<td>1</td>
<td>-0.654</td>
<td>-</td>
<td>3</td>
<td>-1.875</td>
<td>1.327</td>
</tr>
<tr>
<td>HPB</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.563</td>
<td>-</td>
</tr>
<tr>
<td>HPC</td>
<td>1</td>
<td>-2.232</td>
<td>-</td>
<td>1</td>
<td>-2.232</td>
<td>-</td>
</tr>
<tr>
<td>HPD</td>
<td>1</td>
<td>-3.061</td>
<td>-</td>
<td>1</td>
<td>-3.061</td>
<td>-</td>
</tr>
<tr>
<td>All data</td>
<td>11</td>
<td>-1.824</td>
<td>1.039</td>
<td>40</td>
<td>-2.269</td>
<td>1.792</td>
</tr>
</tbody>
</table>
for the direct comparison and the curve fitting method within ±2° boxes, respectively) was larger than that calculated using TCCON data (2.09 ppm). This difference may be partly attributed to the fact that TCCON data were used as time-averaged data (e.g., averages of the data obtained within ±30 min of the GOSAT overpass time) for comparing to the GOSAT XCO₂, whereas aircraft measurement data were momentarily obtained at respective heights.

We suggest that the present version (ver. 02.00) of GOSAT FTS-SWIR XCO₂ products is a significant improvement on the previous version (ver. 01.xx), which produced values approximately 9 ppm lower than ground-based FTS data in several locations across the globe (Morino et al., 2011). In addition, our results with aircraft measurements were similar to those of Yoshida et al. (2013), who validated GOSAT XCO₂ with the TCCON data. The GOSAT XCO₂ data (ver. 02.00) observed over not only land but also ocean regions are significantly correlated with aircraft measurement data.

Table 5. The average and 1 standard deviation (1σ) of the differences between GOSAT XCO₂ and aircraft-based XCO₂ for all sites by direct comparison and the curve fitting method.

<table>
<thead>
<tr>
<th>±2 deg.</th>
<th>direct comparison</th>
<th>curve fitting method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>average [ppm]</td>
</tr>
<tr>
<td>Land</td>
<td>74</td>
<td>−0.68</td>
</tr>
<tr>
<td>Ocean</td>
<td>11</td>
<td>−1.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>±5 deg.</th>
<th>direct comparison</th>
<th>curve fitting method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>average [ppm]</td>
</tr>
<tr>
<td>Land</td>
<td>182</td>
<td>−0.99</td>
</tr>
<tr>
<td>Ocean</td>
<td>40</td>
<td>−2.27</td>
</tr>
</tbody>
</table>

the averages of the differences between the GOSAT XCO₂ over ocean and the aircraft-based XCO₂ were −1.82 ppm (−2.27 ppm) with a standard deviation of 1.04 ppm (1.79 ppm) for ±2° (±5°) boxes. The curve fitting method would be also useful as an alternative validation method. Finally, the present version (ver. 02.00) of GOSAT SWIR products was a significant improvement on the earlier version (ver. 01.xx), which produced values approximately 9 ppm lower than reference data (Morino et al., 2011). However, the standard deviations of the differences between GOSAT XCO₂ and aircraft-based XCO₂ were not as small, being around 3 ppm at several sites. Further studies are required to investigate the causes of this finding with a focus on the correlation between GOSAT SWIR XCO₂ and several simultaneously retrieved variables, including aerosol optical depth and surface albedo.

5 Summary and conclusions

This paper presents a validation of XCO₂ derived from GOSAT TANSO-FTS SWIR (ver. 02.00) using aircraft measurement data obtained from CONTRAIL, NOAA, DOE, NIES, the HIPPO program, and the NIES-JAXA campaign. Prior to the GOSAT validation, we examined how the aircraft-based XCO₂ changes following application of the GOSAT SWIR CAK. The differences between aircraft-based XCO₂ with and without CAK were evaluated to be less than ±0.4 ppm at most, and less than ±0.1 ppm on average. Therefore, we concluded that the GOSAT CAK had only a minor effect on the aircraft-based XCO₂ calculation.

We performed a comparison between GOSAT SWIR XCO₂ observed within ±2 or ±5° latitude/longitude boxes at each site and aircraft-based XCO₂ measured on a GOSAT overpass day. These results indicated that GOSAT XCO₂ over land regions agreed with aircraft-based XCO₂, except that the former is biased by −0.68 ppm (−0.99 ppm) with a standard deviation of 2.56 ppm (2.51 ppm), whereas

Supplementary material related to this article is available online at http://www.atmos-chem-phys.net/13/9771/2013/acp-13-9771-2013-supplement.pdf.

Acknowledgements.

The authors thank the many staff members of Japan Airlines, the JAL Foundation, and JAMCO Tokyo for supporting the CONTRAIL project. We are grateful to the NOAA ESRL/GMD tall tower network (K. Davis, A. Desai, R. Teclaw, D. Baumann, and C. Stanier) for providing LEF and WBI CO₂ tower data. DOE fights were supported by the Office of Biological and Environmental Research of the US Department of Energy under contract No. DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility, and Terrestrial Ecosystem Science Program. We also thank the HIPPO team members for CO₂ profile data by HIPPO missions and Steven C. Wofsy at Harvard University for his useful suggestions. The HIPPO program is supported by the National Science Foundation (NSF), and its operations are managed by the Earth Observing Laboratory (EOL) of the National Center for Atmospheric Research (NCAR). TCCON a priori profiles were obtained from the TCCON data archive, operated by the
References

