Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 961-981, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
23 Jan 2013
Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris
M. Crippa1, P. F. DeCarlo1,*, J. G. Slowik1, C. Mohr1,**, M. F. Heringa1,***, R. Chirico1,****, L. Poulain2, F. Freutel3, J. Sciare4, J. Cozic5, C. F. Di Marco6, M. Elsasser7,8, J. B. Nicolas4, N. Marchand9, E. Abidi9, A. Wiedensohler2, F. Drewnick3, J. Schneider3, S. Borrmann3,10, E. Nemitz6, R. Zimmermann7,8, J.-L. Jaffrezo5, A. S. H. Prévôt1, and U. Baltensperger1 1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI Villigen, 5232, Switzerland
2Leibniz Institut for Tropospheric Research, Permoserstr 15, 04318, Leipzig, Germany
3Particle Chemistry Department, Max-Planck-Institute for Chemistry, 55128 Mainz, Germany
4Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Laboratoire CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
5UJF – Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE) UMR5183, Grenoble, 38041, France
6Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
7Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
8Joint Mass Spectrometry Centre, Universität Rostock, Institut für Chemie, Lehrstuhl für Analytische Chemie, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
9Aix-Marseille Université, CNRS, LCE FRE 3416, 13331, Marseille, France
10Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
*now at: Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
**now at: Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
***now at: WIL Research, 5203 DL 's-Hertogenbosch, The Netherlands
****now at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAPRAD-DIM, Via E. Fermi 45, 00044 Frascati, Italy
Abstract. The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%), ammonium (12–14%) and black carbon (7–13%).

Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11–15% of organic mass), biomass burning (13–15%) and cooking (up to 35% during meal hours). Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.

Citation: Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961-981,, 2013.
Publications Copernicus