Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 18 | Copyright

Special issue: Chemistry, microphysics and dynamics of the polar stratosphere:...

Atmos. Chem. Phys., 13, 9233-9268, 2013
https://doi.org/10.5194/acp-13-9233-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Sep 2013

Research article | 16 Sep 2013

Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results

M. von Hobe1, S. Bekki2, S. Borrmann3, F. Cairo4, F. D'Amato5, G. Di Donfrancesco32, A. Dörnbrack6, A. Ebersoldt7, M. Ebert8, C. Emde9, I. Engel10,******, M. Ern1, W. Frey3,*, S. Genco4, S. Griessbach11, J.-U. Grooß1, T. Gulde12, G. Günther1, E. Hösen13, L. Hoffmann11, V. Homonnai14, C. R. Hoyle10,**, I. S. A. Isaksen15, D. R. Jackson16, I. M. Jánosi14, R. L. Jones17, K. Kandler8, C. Kalicinsky13, A. Keil18, S. M. Khaykin19, F. Khosrawi20, R. Kivi21, J. Kuttippurath2, J. C. Laube22, F. Lefèvre2, R. Lehmann23, S. Ludmann24, B. P. Luo10, M. Marchand2, J. Meyer1, V. Mitev25, S. Molleker3, R. Müller1, H. Oelhaf12, F. Olschewski13, Y. Orsolini26, T. Peter10, K. Pfeilsticker24, C. Piesch12, M. C. Pitts27, L. R. Poole28, F. D. Pope17,***, F. Ravegnani4, M. Rex23, M. Riese1, T. Röckmann29, B. Rognerud15, A. Roiger6, C. Rolf1, M. L. Santee30, M. Scheibe6, C. Schiller1, H. Schlager6, M. Siciliani de Cumis5, N. Sitnikov19, O. A. Søvde15, R. Spang1, N. Spelten1, F. Stordal15, O. Sumińska-Ebersoldt1,****, A. Ulanovski19, J. Ungermann1, S. Viciani5, C. M. Volk13, M. vom Scheidt13, P. von der Gathen23, K. Walker31, T. Wegner1, R. Weigel3, S. Weinbruch8, G. Wetzel12, F. G. Wienhold10, I. Wohltmann23, W. Woiwode12, I. A. K. Young17,*****, V. Yushkov19, B. Zobrist10, and F. Stroh1 M. von Hobe et al.
  • 1Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-7), Jülich, Germany
  • 2LATMOS-IPSL, UPMC Univ. Paris 06, Université Versailles St.-Quentin, CNRS/INSU, Paris, France
  • 3Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany
  • 4Institute of Atmospheric Science and Climate, ISAC-CNR, Italy
  • 5CNR-INO (Istituto Nazionale di Ottica), Largo E. Fermi, 6, 50125 Firenze, Italy
  • 6Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Weßling, Germany
  • 7Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 8Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Umweltmineralogie, Darmstadt, Germany
  • 9Meteorologisches Institut, Ludwig-Maximilians-Universität, München, Germany
  • 10ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
  • 11Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
  • 12Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 13Department of Physics, University of Wuppertal, Germany
  • 14Department of Physics of Complex Systems, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
  • 15Department of Geosciences, University of Oslo, Oslo, Norway
  • 16Met Office, Exeter, UK
  • 17University of Cambridge, Department of Chemistry, Cambridge, UK
  • 18Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany
  • 19Central Aerological Observatory, Dolgoprudny, Moskow Region, Russia
  • 20MISU, Stockholm University, Stockholm, Sweden
  • 21Finnish Meteorological Institute, Arctic Research, Sodankylä, Finland
  • 22University of East Anglia, School of Environmental Sciences, Norwich, UK
  • 23Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
  • 24Institut für Umweltphysik, University of Heidelberg, Germany
  • 25CSEM Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland
  • 26Norwegian Institute for Air Research, Kjeller, Norway
  • 27NASA Langley Research Center, Hampton, VA 23681, USA
  • 28Science Systems and Applications, Inc. Hampton, VA 23666, USA
  • 29Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands
  • 30JPL/NASA, California Institute of Technology, Pasadena, California, USA
  • 31Department of Physics, University of Toronto, Toronto, Canada
  • 32Ente Nazionale per le Nuove tecnologie, l'Energia e l'Ambiente, Roma, Italy
  • *now at: School of Earth Sciences, The University of Melbourne, Melbourne, Australia
  • **now at: Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, Switzerland
  • ***now at: School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
  • ****now at: Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • *****now at: The British Museum, London, UK
  • ******now at: Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-7), Jülich, Germany

Abstract. The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share