Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 8265-8283, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
22 Aug 2013
Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution
Y. Kanaya1, H. Akimoto*,1, Z.-F. Wang2, P. Pochanart**,1, K. Kawamura3, Y. Liu2,1, J. Li2,1, Y. Komazaki1, H. Irie***,1, X.-L. Pan1, F. Taketani1, K. Yamaji****,1, H. Tanimoto4, S. Inomata4, S. Kato5, J. Suthawaree5, K. Okuzawa3, G. Wang3,*****, S. G. Aggarwal3,******, P. Q. Fu3,2, T. Wang6, J. Gao6, Y. Wang2, and G. Zhuang7 1Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 2360001, Japan
2LAPC, Institute for Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3Institute of Low Temperature Science, Hokkaido University, Sapporo 0600819, Japan
4National Institute for Environmental Studies, Tsukuba 3058506, Japan
5Tokyo Metropolitan University, Hachioji 1920397, Japan
6The Hong Kong Polytechnic University, Hong Kong, China
7Fudan University, Shanghai 200433, China
*now at Asia Center for Air Pollution Research, Niigata 9502144, Japan
**now at: National Institute of Development Administration, Bangkok 10240, Thailand
***now at: Chiba University, Chiba 2638522, Japan
****now at: Kobe University, Kobe 6580022, Japan
*****now at: Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
******now at: National Physical Laboratory, New Delhi 110012, India
Abstract. We conducted an intensive field campaign at the summit of Mt. Tai (36.26° N, 117.11° E, 1534 m above sea level), Shandong Province, located at the center of central East China, during the period 28 May to 30 June 2006, to study seasonal maxima of regional air pollution with respect to ozone (O3) and aerosols. The specific objectives, campaign design, and major findings are summarized. High concentrations of O3 and its precursors, and aerosols, were detected and studied in the context of annual variations. Most importantly, we identified that emissions from regional-scale open crop residue burning after the harvesting of winter wheat, together with photochemical aging, strongly increased the concentrations of O3, aerosols, and primary pollutants in this month of year. Studies of in situ photochemical activity, regional source attribution of O3, O3–aerosol interactions, validation of satellite observations of tropospheric NO2, behaviors of volatile organic compounds and organic/inorganic aerosol species, loss rates of black carbon (BC), and instrument inter-comparisons are also summarized. The observed BC levels must have a strong impact on the regional climate.

Citation: Kanaya, Y., Akimoto, H., Wang, Z.-F., Pochanart, P., Kawamura, K., Liu, Y., Li, J., Komazaki, Y., Irie, H., Pan, X.-L., Taketani, F., Yamaji, K., Tanimoto, H., Inomata, S., Kato, S., Suthawaree, J., Okuzawa, K., Wang, G., Aggarwal, S. G., Fu, P. Q., Wang, T., Gao, J., Wang, Y., and Zhuang, G.: Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution, Atmos. Chem. Phys., 13, 8265-8283,, 2013.
Publications Copernicus