Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 2 | Copyright

Special issue: Atmospheric impacts of Eastern Asia megacities

Atmos. Chem. Phys., 13, 803-817, 2013
https://doi.org/10.5194/acp-13-803-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jan 2013

Research article | 22 Jan 2013

Characteristics and sources of carbonaceous aerosols from Shanghai, China

J.-J. Cao1,2, C.-S. Zhu1, X.-X. Tie1,3, F.-H. Geng4, H.-M. Xu1, S. S. H. Ho1, G.-H. Wang1, Y.-M. Han1, and K.-F. Ho5 J.-J. Cao et al.
  • 1Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
  • 2Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
  • 3National Center for Atmospheric Research, Boulder, CO, USA
  • 4Shanghai Meteorological Bureau, Shanghai, China
  • 5School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China

Abstract. An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share