Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 14 | Copyright

Special issue: Water Vapour in the Climate System (WAVACS) COST action: observations,...

Atmos. Chem. Phys., 13, 6907-6920, 2013
https://doi.org/10.5194/acp-13-6907-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Jul 2013

Research article | 23 Jul 2013

HIRS channel 12 brightness temperature dataset and its correlations with major climate indices

L. Shi1, C. J. Schreck III2, and V. O. John3 L. Shi et al.
  • 1National Climatic Data Center, National Oceanic and Atmospheric Administration, Asheville, North Carolina, USA
  • 2Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, North Carolina, USA
  • 3Met Office Hadley Centre, Exeter, UK

Abstract. A new version of the High-Resolution Infrared Radiation Sounder (HIRS) upper tropospheric water vapor channel (channel 12) brightness temperature dataset is developed using intersatellite calibrated data. In this dataset, only those pixels affected by upper tropospheric clouds are discarded. Compared to the previous version that was based on column-clear-sky data, the new version has much better daily spatial coverage. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders vary with respect to brightness temperature with larger differences for higher (dry) values. Correlations between the HIRS upper tropospheric water vapor channel brightness temperatures and several major climate indices show strong signals during cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. Qualitatively, moist signals are correlated with troughs and ascending branches of the circulation, while dry signals occur with ridges and descent. These correlations show the potential of using the upper tropospheric water vapor channel brightness temperature dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share