Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 6713-6726, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
17 Jul 2013
Aerosol effects on the cloud-field properties of tropical convective clouds
S.-S. Lee1,2 and G. Feingold1 1NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder Colorado, USA
2Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder Colorado, USA
Abstract. Aerosol effects on condensed water and precipitation in a tropical cloud system driven by deep convective clouds are investigated for two-dimensional simulations of 2-day duration. Although an assumed 10-fold increase in aerosol concentration results in a similar temporal evolution of mean precipitation and a small (9%) difference in cumulative precipitation between the high- and low-aerosol cases, the characteristics of the convection are much more sensitive to aerosol. The convective mass flux, and temporal evolution and frequency distribution of the condensed water path WP (sum of liquid- and ice-water paths) differ significantly between unperturbed and aerosol-perturbed simulations. There are concomitant differences in the relative importance of individual microphysical processes and the frequency distribution of the precipitation rate (P). With increasing aerosol (i) the convective mass flux increases, leading to increases in condensation, cloud liquid, and accretion of cloud liquid by precipitation; (ii) autoconversion of cloud water to rain water decreases; (iii) the WP spatial distribution becomes more homogeneous; and (iv) there is an increase in the frequencies of high and low WP and P, and a decrease in these frequencies at the mid-range of WP and P. Thus, while aerosol perturbations have a small influence on total precipitation amount, for the case considered, they do have substantial influence on the spatiotemporal distribution of convection and precipitation.

Citation: Lee, S.-S. and Feingold, G.: Aerosol effects on the cloud-field properties of tropical convective clouds, Atmos. Chem. Phys., 13, 6713-6726,, 2013.
Publications Copernicus