Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 2 | Copyright
Atmos. Chem. Phys., 13, 509-519, 2013
https://doi.org/10.5194/acp-13-509-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jan 2013

Research article | 16 Jan 2013

Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols

J. Mao1,2, S. Fan2, D. J. Jacob3, and K. R. Travis3 J. Mao et al.
  • 1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08542, USA
  • 2Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ 08542, USA
  • 3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract. The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO2 uptake by aerosol involves conversion to H2O2, but this is of limited efficacy as an HO2 sink because H2O2 can photolyze to regenerate OH and from there HO2. Joint atmospheric observations of HO2 and H2O2 suggest that HO2 uptake by aerosols may in fact not produce H2O2. Here we propose a catalytic mechanism involving coupling of the transition metal ions Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO2 to H2O in aqueous aerosols. The implied HO2 uptake and conversion to H2O significantly affects global model predictions of tropospheric OH, ozone, carbon monoxide (CO) and other species, improving comparisons to observations in the GEOS-Chem model. It represents a previously unrecognized positive radiative forcing of aerosols through the effects on the chemical budgets of major greenhouse gases including methane and hydrofluorocarbons (HFCs).

Download & links
Publications Copernicus
Download
Citation
Share