Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 13, issue 9
Atmos. Chem. Phys., 13, 4783-4799, 2013
https://doi.org/10.5194/acp-13-4783-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

Atmos. Chem. Phys., 13, 4783-4799, 2013
https://doi.org/10.5194/acp-13-4783-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 May 2013

Research article | 08 May 2013

Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties

J. Zábori1, R. Krejci2,1, J. Ström1, P. Vaattovaara3, A. M. L. Ekman4,5, M. E. Salter1, E. M. Mårtensson6,1, and E. D. Nilsson1 J. Zábori et al.
  • 1Department of Applied Environmental Science, Stockholm University, 114 18 Stockholm, Sweden
  • 2Department of Physics, University of Helsinki, 00014 Helsinki, Finland
  • 3Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
  • 4Department of Meteorology, Stockholm University, 114 18 Stockholm, Sweden
  • 5Bert Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
  • 6Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden

Abstract. Primary marine aerosols (PMAs) are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent, will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw) range between −1°C and 15°C. A sharp decrease in PMA emissions for a Tw increase from −1°C to 4°C was followed by a lower rate of change in PMA emissions for Tw up to about 6°C. Near constant number concentrations for water temperatures between 6°C to 10°C and higher were recorded. Even though the total particle number concentration changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for a dry diameter (Dp< 0.125μm measured during winter conditions were similar (deviation of up to 3%), or lower (up to 70%) than the ones measured during summer conditions (for the same water temperature range). For Dp > 0.125μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%). The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1°C to 10°C during winter measurements showed a decrease in the peak of relative particle number concentration at about a Dp of 0.180μm, while an increase was observed for particles with Dp > 1μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range 7–11°C. The differences in the shape of the number size distributions between winter and summer may be caused by different production of organic material in water, different local processes modifying the water masses within the fjord (for example sea ice production in winter and increased glacial meltwater inflow during summer) and different origin of the dominant sea water mass. Further research is needed regarding the contribution of these factors to the PMA production.

Publications Copernicus
Special issue
Download
Citation
Share