Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 8 | Copyright
Atmos. Chem. Phys., 13, 4413-4427, 2013
https://doi.org/10.5194/acp-13-4413-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Apr 2013

Research article | 29 Apr 2013

Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century

J. M. Siddaway1, S. V. Petelina1, D. J. Karoly2, A. R. Klekociuk3, and R. J. Dargaville2 J. M. Siddaway et al.
  • 1Department of Physics, La Trobe University, Bundoora VIC 3086, Australia
  • 2School of Earth Sciences, University of Melbourne, Melbourne VIC 3010, Australia
  • 3CPC Program, Australian Antarctic Division, Kingston TAS 7050, Australia

Abstract. Chemistry-Climate Model Validation phase 2 (CCMVal-2) model simulations are used to analyze Antarctic ozone increases in 2000–2100 during local spring and early summer, both vertically integrated and at several pressure levels in the lower stratosphere. Multi-model median trends of monthly zonal mean total ozone column (TOC), ozone volume mixing ratio (VMR), wind speed and temperature poleward of 60° S are investigated. Median values are used to account for large variability in models, and the associated uncertainty is calculated using a bootstrapping technique. According to the trend derived from the twelve CCMVal-2 models selected, Antarctic TOC will not return to a 1965 baseline, an average of 1960–1969 values, by the end of the 21st century in September–November, but will return in ~2080 in December. The speed of December ozone depletion before 2000 was slower compared to spring months, and thus the decadal rate of December TOC increase after 2000 is also slower. Projected trends in December ozone VMR at 20–100 hPa show a much slower rate of ozone recovery, particularly at 50–70 hPa, than for spring months. Trends in temperature and winds at 20–150 hPa are also analyzed in order to attribute the projected slow increase of December ozone and to investigate future changes in the Antarctic atmosphere in general, including some aspects of the polar vortex breakup.

Download & links
Publications Copernicus
Download
Citation
Share