Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 4057-4072, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
18 Apr 2013
Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations
K. W. Bowman1, D. T. Shindell2, H. M. Worden3, J.F. Lamarque3, P. J. Young4, D. S. Stevenson5, Z. Qu6, M. de la Torre1, D. Bergmann7, P. J. Cameron-Smith7, W. J. Collins8, R. Doherty5, S. B. Dalsøren9, G. Faluvegi2, G. Folberth10, L. W. Horowitz11, B. M. Josse12, Y. H. Lee2, I. A. MacKenzie5, G. Myhre9, T. Nagashima13, V. Naik15, D. A. Plummer16, S. T. Rumbold10, R. B. Skeie9, S. A. Strode17, K. Sudo14, S. Szopa18, A. Voulgarakis20, G. Zeng19, S. S. Kulawik1, A. M. Aghedo21, and J. R. Worden1 1Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA
2NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY, USA
3National Center for Atmospheric Research,Boulder, Colorado, USA
4Lancaster Environment Centre, Lancaster University, Lancaster, UK
5School of GeoSciences, The University of Edinburgh, Edinburgh, UK
6Raytheon Intelligence & Information Systems, Pasadena, CA USA
7Lawrence Livermore National Laboratory, Livermore, CA, USA
8Department of Meteorology, University of Reading, Reading, UK
9Center for International Climate and Environmental Research, Oslo, Norway
10Met Office, Hadley Centre, Exeter, UK
11NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
12GAME/CNRM, Météo-France, CNRS – Centre National de Recherches Météorologiques, Toulouse, France
13National Institute for Environmental Studies, Tsukuba, Japan
14Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
15UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
16Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria, British Columbia, Canada
17NASA Goddard Space Flight Center and Universities Space Research Association, Columbia, Maryland, USA
18Laboratoire des Sciences du Climat et l'Environnement, Gif-sur-Yvette, France
19National Institute of Water and Atmospheric Research, Lauder, New Zealand
20Department of Physics, Imperial College London, London, UK
21Civil and Environmental Engineering,Rice University, Houston, TX, USA
Abstract. We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005–2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120 mW m−2 OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39 ± 41 m Wm−2 relative to TES data. We show that there is a correlation (R2 = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750–2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100 m Wm−2. Removing these models leads to a mean ozone radiative forcing of 394 ± 42 m Wm−2. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 ± 60 m Wm−2 derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

Citation: Bowman, K. W., Shindell, D. T., Worden, H. M., Lamarque, J. F., Young, P. J., Stevenson, D. S., Qu, Z., de la Torre, M., Bergmann, D., Cameron-Smith, P. J., Collins, W. J., Doherty, R., Dalsøren, S. B., Faluvegi, G., Folberth, G., Horowitz, L. W., Josse, B. M., Lee, Y. H., MacKenzie, I. A., Myhre, G., Nagashima, T., Naik, V., Plummer, D. A., Rumbold, S. T., Skeie, R. B., Strode, S. A., Sudo, K., Szopa, S., Voulgarakis, A., Zeng, G., Kulawik, S. S., Aghedo, A. M., and Worden, J. R.: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations, Atmos. Chem. Phys., 13, 4057-4072,, 2013.
Publications Copernicus