Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 3695-3703, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
04 Apr 2013
Exploring the atmospheric chemistry of O2SO3 and assessing the maximum turnover number of ion-catalysed H2SO4 formation
N. Bork1,2, T. Kurtén1,3, and H. Vehkamäki1 1Division of Atmospheric Sciences and Geophysics, Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
2Department of Chemistry, H.C. Ørsted Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
3Laboratory of Physical Chemistry, Department of Chemistry, P.O. Box 55, University of Helsinki, 00014 University of Helsinki, Finland
Abstract. It has recently been demonstrated that the O2SO3 ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3 with O3. The most important reactions are (a) oxidation to O2SO3 and (b) cluster decomposition into SO3, O2 and O3. The former reaction is highly exothermic, and the nascent O2SO3 will rapidly decompose into SO4 and O2. If the origin of O2SO3 is SO2 oxidation by O3, the latter reaction closes a catalytic cycle wherein SO2 is oxidized to SO3. The relative rate between the two major sinks for O2SO3 is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a) and (b) is significantly altered by the presence or absence of a single water molecule, but reaction (b) is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels in typical CO2-free and low NOx reaction chambers, e.g. the CLOUD chamber at CERN.

Citation: Bork, N., Kurtén, T., and Vehkamäki, H.: Exploring the atmospheric chemistry of O2SO3 and assessing the maximum turnover number of ion-catalysed H2SO4 formation, Atmos. Chem. Phys., 13, 3695-3703,, 2013.
Publications Copernicus