Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 13, issue 5 | Copyright

Special issue: Atmospheric implications of the volcanic eruptions of Eyjafjallajökull,...

Atmos. Chem. Phys., 13, 2589-2606, 2013
https://doi.org/10.5194/acp-13-2589-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Mar 2013

Research article | 05 Mar 2013

Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

K. Zakšek1,2, M. Hort1, J. Zaletelj2,3, and B. Langmann1 K. Zakšek et al.
  • 1Institute of Geophysics, University of Hamburg, Hamburg, Germany
  • 2Centre of Excellence Space-SI, Ljubljana, Slovenia
  • 3Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

Abstract. Volcanic ash cloud-top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3–4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share