Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 13, issue 4
Atmos. Chem. Phys., 13, 2091-2113, 2013
https://doi.org/10.5194/acp-13-2091-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Carbonaceous Aerosols and Radiative Effects Study (CARES)

Atmos. Chem. Phys., 13, 2091-2113, 2013
https://doi.org/10.5194/acp-13-2091-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Feb 2013

Research article | 21 Feb 2013

Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

J. E. Shilling1, R. A. Zaveri1, J. D. Fast1, L. Kleinman2, M. L. Alexander3, M. R. Canagaratna4, E. Fortner4, J. M. Hubbe1, J. T. Jayne4, A. Sedlacek2, A. Setyan5, S. Springston2, D. R. Worsnop4, and Q. Zhang5 J. E. Shilling et al.
  • 1Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory Richland, WA 99352, USA
  • 2Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA
  • 3Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA 99352, USA
  • 4Aerodyne Research, Inc., Billerica, MA 08121, USA
  • 5Department of Environmental Toxicology, University of California, Davis, CA 95616, USA

Abstract. The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv. But, when biogenic and anthropogenic emissions mixed, OA levels were enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. After considering several anthropogenic/biogenic interaction mechanisms, we conclude that NOx concentrations play a strong role in enhancing SOA formation from isoprene, though the chemical mechanism for the enhancement remains unclear. If these observations are found to be robust in other seasons and in areas outside of Sacramento, regional and global aerosol modules will need to incorporate more complex representations of NOx-dependent SOA mechanisms and yields into their algorithms. Ultimately, accurately predicting OA mass concentrations and their effect on radiation balance will require a mechanistically-based treatment of the interactions of biogenic and anthropogenic emissions.

Publications Copernicus
Special issue
Download
Citation
Share